論文の概要: Quantum-inspired Machine Learning on high-energy physics data
- arxiv url: http://arxiv.org/abs/2004.13747v2
- Date: Fri, 9 Jul 2021 08:36:06 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-08 22:50:32.879029
- Title: Quantum-inspired Machine Learning on high-energy physics data
- Title(参考訳): 高エネルギー物理データを用いた量子インスピレーション機械学習
- Authors: Timo Felser, Marco Trenti, Lorenzo Sestini, Alessio Gianelle, Davide
Zuliani, Donatella Lucchesi and Simone Montangero
- Abstract要約: CERNの大型ハドロン衝突型加速器が生成するデータの分析と分類に量子インスパイアされた機械学習技術を適用した。
特に、いわゆるb-ジェットを効果的に分類する方法、陽子-陽子実験からb-クォークを起源とするジェット、および分類結果の解釈方法について述べる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Tensor Networks, a numerical tool originally designed for simulating quantum
many-body systems, have recently been applied to solve Machine Learning
problems. Exploiting a tree tensor network, we apply a quantum-inspired machine
learning technique to a very important and challenging big data problem in high
energy physics: the analysis and classification of data produced by the Large
Hadron Collider at CERN. In particular, we present how to effectively classify
so-called b-jets, jets originating from b-quarks from proton-proton collisions
in the LHCb experiment, and how to interpret the classification results. We
exploit the Tensor Network approach to select important features and adapt the
network geometry based on information acquired in the learning process.
Finally, we show how to adapt the tree tensor network to achieve optimal
precision or fast response in time without the need of repeating the learning
process. These results pave the way to the implementation of high-frequency
real-time applications, a key ingredient needed among others for current and
future LHCb event classification able to trigger events at the tens of MHz
scale.
- Abstract(参考訳): 量子多体システムのシミュレーション用に設計された数値ツールであるTensor Networksは、機械学習の問題を解決するために最近応用されている。
木テンソルネットワークをエクスプロイトし、CERNの大型ハドロン衝突型加速器によって生成されたデータの分析と分類を、高エネルギー物理学において非常に重要かつ挑戦的なビッグデータ問題に適用する。
特に, LHCb実験において, いわゆるb-ジェット, 陽子-陽子衝突に由来するb-クォークを効果的に分類する方法, および, 分類結果の解釈方法について述べる。
我々は,テンソルネットワークアプローチを利用して重要な特徴を抽出し,学習プロセスで取得した情報に基づいてネットワーク形状を適応する。
最後に,木テンソルネットワークを適応させて,学習プロセスを繰り返すことなく,最適な精度や高速な応答を実現する方法を示す。
これらの結果は、数十mhz規模のイベントをトリガできる現在のlhcbイベント分類や将来のlhcbイベント分類に必要な重要な要素である、高周波リアルタイムアプリケーションの実装への道を開いた。
関連論文リスト
- Hybrid Quantum Graph Neural Network for Molecular Property Prediction [0.17747993681679466]
我々は,ペロブスカイト材料の形成エネルギーを予測するために,自由ハイブリッド量子勾配古典畳み込みグラフニューラルネットワークを開発した。
我々の研究は、量子特徴符号化とパラメトリック量子回路が複雑な機械学習アルゴリズムを劇的に改善する方法を探求する新たな道筋を示唆している。
論文 参考訳(メタデータ) (2024-05-08T16:43:25Z) - Neural auto-designer for enhanced quantum kernels [59.616404192966016]
本稿では,問題固有の量子特徴写像の設計を自動化するデータ駆動型手法を提案する。
私たちの研究は、量子機械学習の進歩におけるディープラーニングの実質的な役割を強調します。
論文 参考訳(メタデータ) (2024-01-20T03:11:59Z) - Hybrid Quantum Neural Network in High-dimensional Data Classification [1.4801853435122907]
本稿では,古典的畳み込み層と量子ニューラルネットワークを組み合わせた新しいモデルアーキテクチャを提案する。
この実験は、Bird-CLEF 2021データセットから高次元オーディオデータを分類することを目的としている。
論文 参考訳(メタデータ) (2023-12-02T04:19:23Z) - ShadowNet for Data-Centric Quantum System Learning [188.683909185536]
本稿では,ニューラルネットワークプロトコルと古典的シャドウの強みを組み合わせたデータ中心学習パラダイムを提案する。
ニューラルネットワークの一般化力に基づいて、このパラダイムはオフラインでトレーニングされ、これまで目に見えないシステムを予測できる。
量子状態トモグラフィーおよび直接忠実度推定タスクにおいて、我々のパラダイムのインスタンス化を示し、60量子ビットまでの数値解析を行う。
論文 参考訳(メタデータ) (2023-08-22T09:11:53Z) - Problem-Dependent Power of Quantum Neural Networks on Multi-Class
Classification [83.20479832949069]
量子ニューラルネットワーク(QNN)は物理世界を理解する上で重要なツールとなっているが、その利点と限界は完全には理解されていない。
本稿では,多クラス分類タスクにおけるQCの問題依存力について検討する。
我々の研究はQNNの課題依存力に光を当て、その潜在的なメリットを評価するための実践的なツールを提供する。
論文 参考訳(メタデータ) (2022-12-29T10:46:40Z) - A didactic approach to quantum machine learning with a single qubit [68.8204255655161]
我々は、データ再ロード技術を用いて、単一のキュービットで学習するケースに焦点を当てる。
我々は、Qiskit量子コンピューティングSDKを用いて、おもちゃと現実世界のデータセットに異なる定式化を実装した。
論文 参考訳(メタデータ) (2022-11-23T18:25:32Z) - Fitting a Collider in a Quantum Computer: Tackling the Challenges of
Quantum Machine Learning for Big Datasets [0.0]
この課題に対処するために、特徴とデータプロトタイプの選択手法が研究された。
グリッドサーチが行われ、量子機械学習モデルが訓練され、古典的な浅層機械学習手法に対してベンチマークされた。
量子アルゴリズムの性能は、大規模なデータセットを使用しても、古典的なアルゴリズムに匹敵することがわかった。
論文 参考訳(メタデータ) (2022-11-06T22:45:37Z) - Optimizing Tensor Network Contraction Using Reinforcement Learning [86.05566365115729]
本稿では,グラフニューラルネットワーク(GNN)と組み合わせた強化学習(RL)手法を提案する。
この問題は、巨大な検索スペース、重い尾の報酬分布、そして困難なクレジット割り当てのために非常に難しい。
GNNを基本方針として利用するRLエージェントが,これらの課題にどのように対処できるかを示す。
論文 参考訳(メタデータ) (2022-04-18T21:45:13Z) - Quantum Machine Learning for $b$-jet charge identification [0.0]
本稿では,LHCb実験のシミュレーションデータに応用された変分量子をベースとして,ジェットが生産時に$b$または$barbクォークによって形成されたハドロンを含むかどうかを同定する新しい手法を提案する。
論文 参考訳(メタデータ) (2022-02-28T16:48:27Z) - Quantum Federated Learning with Quantum Data [87.49715898878858]
量子機械学習(QML)は、量子コンピューティングの発展に頼って、大規模な複雑な機械学習問題を探求する、有望な分野として登場した。
本稿では、量子データ上で動作し、量子回路パラメータの学習を分散的に共有できる初めての完全量子連合学習フレームワークを提案する。
論文 参考訳(メタデータ) (2021-05-30T12:19:27Z) - Quantum neural networks with deep residual learning [29.929891641757273]
本稿では,深層残留学習(resqnn)を用いた新しい量子ニューラルネットワークを提案する。
ResQNNは未知のユニタリを学び、驚くべきパフォーマンスを得ることができます。
論文 参考訳(メタデータ) (2020-12-14T18:11:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。