Detecting Production Phases Based on Sensor Values using 1D-CNNs
- URL: http://arxiv.org/abs/2004.14475v1
- Date: Fri, 24 Apr 2020 00:45:48 GMT
- Title: Detecting Production Phases Based on Sensor Values using 1D-CNNs
- Authors: Burkhard Hoppenstedt, Manfred Reichert, Ghada El-Khawaga, Klaus
Kammerer, Karl-Michael Winter, R\"udiger Pryss
- Abstract summary: We identify production phases through the inspection of sensor values with the help of convolutional neural networks.
Our supervised learning approach unveils a promising accuracy for the chosen neural network.
We consider solutions like shown in this work as salient pillars in the field of predictive maintenance.
- Score: 2.359291431338925
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the context of Industry 4.0, the knowledge extraction from sensor
information plays an important role. Often, information gathered from sensor
values reveals meaningful insights for production levels, such as anomalies or
machine states. In our use case, we identify production phases through the
inspection of sensor values with the help of convolutional neural networks. The
data set stems from a tempering furnace used for metal heat treating. Our
supervised learning approach unveils a promising accuracy for the chosen neural
network that was used for the detection of production phases. We consider
solutions like shown in this work as salient pillars in the field of predictive
maintenance.
Related papers
- SensorBench: Benchmarking LLMs in Coding-Based Sensor Processing [6.8009140511761546]
Large Language Models (LLMs) have promising capabilities in processing sensory data, suggesting their potential as copilots for developing sensing systems.
We construct a comprehensive benchmark, SensorBench, to establish a quantifiable objective.
The results show that while LLMs exhibit considerable proficiency in simpler tasks, they face inherent challenges in processing compositional tasks.
arXiv Detail & Related papers (2024-10-14T17:21:39Z) - Defect Classification in Additive Manufacturing Using CNN-Based Vision
Processing [76.72662577101988]
This paper examines two scenarios: first, using convolutional neural networks (CNNs) to accurately classify defects in an image dataset from AM and second, applying active learning techniques to the developed classification model.
This allows the construction of a human-in-the-loop mechanism to reduce the size of the data required to train and generate training data.
arXiv Detail & Related papers (2023-07-14T14:36:58Z) - Detection of Sensor-To-Sensor Variations using Explainable AI [2.2956649873563952]
chemi-resistive gas sensing devices are plagued by issues of sensor variations during manufacturing.
This study proposes a novel approach for detecting sensor-to-sensor variations in sensing devices using the explainable AI (XAI) method of SHapley Additive exPlanations (SHAP)
The methodology is tested using artificial and realistic Ozone concentration profiles to train a Gated Recurrent Unit (GRU) model.
arXiv Detail & Related papers (2023-06-19T11:00:54Z) - Graph Neural Networks with Trainable Adjacency Matrices for Fault
Diagnosis on Multivariate Sensor Data [69.25738064847175]
It is necessary to consider the behavior of the signals in each sensor separately, to take into account their correlation and hidden relationships with each other.
The graph nodes can be represented as data from the different sensors, and the edges can display the influence of these data on each other.
It was proposed to construct a graph during the training of graph neural network. This allows to train models on data where the dependencies between the sensors are not known in advance.
arXiv Detail & Related papers (2022-10-20T11:03:21Z) - Deep Learning based pipeline for anomaly detection and quality
enhancement in industrial binder jetting processes [68.8204255655161]
Anomaly detection describes methods of finding abnormal states, instances or data points that differ from a normal value space.
This paper contributes to a data-centric way of approaching artificial intelligence in industrial production.
arXiv Detail & Related papers (2022-09-21T08:14:34Z) - Anomaly Detection and Inter-Sensor Transfer Learning on Smart
Manufacturing Datasets [6.114996271792091]
In many cases, the goal of the smart manufacturing system is to rapidly detect (or anticipate) failures to reduce operational cost and eliminate downtime.
This often boils down to detecting anomalies within the sensor date acquired from the system.
The smart manufacturing application domain poses certain salient technical challenges.
We show that predictive failure classification can be achieved, thus paving the way for predictive maintenance.
arXiv Detail & Related papers (2022-06-13T17:51:24Z) - Bayesian Autoencoders for Drift Detection in Industrial Environments [69.93875748095574]
Autoencoders are unsupervised models which have been used for detecting anomalies in multi-sensor environments.
Anomalies can come either from real changes in the environment (real drift) or from faulty sensory devices (virtual drift)
arXiv Detail & Related papers (2021-07-28T10:19:58Z) - Data-based Design of Inferential Sensors for Petrochemical Industry [0.0]
Inferential (or soft) sensors are used in industry to infer the values of imprecisely and rarely measured (or completely unmeasured) variables from variables measured online.
This work is focused on the design of inferential sensors for product composition of an industrial distillation column in two oil refinery units.
arXiv Detail & Related papers (2021-06-25T08:48:50Z) - Real-time detection of uncalibrated sensors using Neural Networks [62.997667081978825]
An online machine-learning based uncalibration detector for temperature, humidity and pressure sensors was developed.
The solution integrates an Artificial Neural Network as main component which learns from the behavior of the sensors under calibrated conditions.
The obtained results show that the proposed solution is able to detect uncalibrations for deviation values of 0.25 degrees, 1% RH and 1.5 Pa, respectively.
arXiv Detail & Related papers (2021-02-02T15:44:39Z) - Forensicability of Deep Neural Network Inference Pipelines [68.8204255655161]
We propose methods to infer properties of the execution environment of machine learning pipelines by tracing characteristic numerical deviations in observable outputs.
Results from a series of proof-of-concept experiments give rise to possible forensic applications, such as the identification of the hardware platform used to produce deep neural network predictions.
arXiv Detail & Related papers (2021-02-01T15:41:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.