論文の概要: A Triangular Network For Density Estimation
- arxiv url: http://arxiv.org/abs/2004.14593v2
- Date: Thu, 28 May 2020 05:12:09 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-08 03:21:37.181978
- Title: A Triangular Network For Density Estimation
- Title(参考訳): 密度推定のための三角形ネットワーク
- Authors: Xi-Lin Li
- Abstract要約: 神経自己回帰流(NAF)の三角形ニューラルネットワークによる実装
設計は高度にモジュール化され、パラメータ経済であり、計算効率が高く、高次元のデータ密度推定に適用できる。
- 参考スコア(独自算出の注目度): 13.30021794793606
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We report a triangular neural network implementation of neural autoregressive
flow (NAF). Unlike many universal autoregressive density models, our design is
highly modular, parameter economy, computationally efficient, and applicable to
density estimation of data with high dimensions. It achieves state-of-the-art
bits-per-dimension indices on MNIST and CIFAR-10 (about 1.1 and 3.7,
respectively) in the category of general-purpose density estimators.
- Abstract(参考訳): 神経自己回帰流(NAF)の三角形ニューラルネットワーク実装について報告する。
多くの普遍的自己回帰密度モデルとは異なり、我々の設計は高度にモジュール化され、パラメータ経済性、計算効率が高く、高次元のデータの密度推定に適用できる。
MNIST と CIFAR-10 (それぞれ 1.1 と 3.7 ) で、汎用密度推定器のカテゴリで、最先端のビット単位の指数を達成する。
関連論文リスト
- Factorized Implicit Global Convolution for Automotive Computational Fluid Dynamics Prediction [52.32698071488864]
非常に大きな3DメッシュのCFD問題を効率的に解く新しいアーキテクチャであるFactized Implicit Global Convolution (FIGConv)を提案する。
FIGConvは、既存の3DニューラルCFDモデルよりも大幅に改善された2次複雑性の$O(N2)$を達成する。
業界標準のAhmedボディデータセットと大規模DrivAerNetデータセットに対するアプローチを検証する。
論文 参考訳(メタデータ) (2025-02-06T18:57:57Z) - Nonparametric estimation of a factorizable density using diffusion models [3.5773675235837974]
本稿では,非パラメトリック密度推定に対する暗黙的なアプローチとして拡散モデルについて検討する。
拡散モデルから構成した暗黙密度推定器は、分解構造に適応し、最小値の最適速度を達成することを示す。
推定器を構築する際には、疎ウェイトシェアリングニューラルネットワークアーキテクチャを設計する。
論文 参考訳(メタデータ) (2025-01-03T12:32:19Z) - Smaller3d: Smaller Models for 3D Semantic Segmentation Using Minkowski
Engine and Knowledge Distillation Methods [0.0]
本稿では, 知識蒸留技術, 特に3次元深層学習におけるスパーステンソルを応用して, 性能を維持しつつ, モデルサイズを小さくする手法を提案する。
我々は,異なるスパース畳み込みNNの最先端モデルの性能をシミュレートするために,標準的な手法や様々な損失の組み合わせを含む異なる損失関数を分析し,目的を定めている。
論文 参考訳(メタデータ) (2023-05-04T22:19:25Z) - 3DVNet: Multi-View Depth Prediction and Volumetric Refinement [68.68537312256144]
3DVNetは、新しいマルチビューステレオ(MVS)深度予測法である。
私たちのキーとなるアイデアは、粗い深度予測を反復的に更新する3Dシーンモデリングネットワークを使用することです。
本手法は, 深度予測と3次元再構成の両指標において, 最先端の精度を超えることを示す。
論文 参考訳(メタデータ) (2021-12-01T00:52:42Z) - Mesh convolutional neural networks for wall shear stress estimation in
3D artery models [7.7393800633675465]
CFDと同じ有限要素表面メッシュ上で直接動作するメッシュ畳み込みニューラルネットワークを提案する。
このメッシュ上での3次元壁せん断応力ベクトルを正確に予測できることが,我々のフレキシブルディープラーニングモデルにより示されている。
論文 参考訳(メタデータ) (2021-09-10T11:32:05Z) - Manifold Topology Divergence: a Framework for Comparing Data Manifolds [109.0784952256104]
本研究では,深部生成モデルの評価を目的としたデータ多様体の比較フレームワークを開発する。
クロスバーコードに基づき,manifold Topology Divergence score(MTop-Divergence)を導入する。
MTop-Divergenceは,様々なモードドロップ,モード内崩壊,モード発明,画像乱れを正確に検出する。
論文 参考訳(メタデータ) (2021-06-08T00:30:43Z) - Nonparametric Density Estimation from Markov Chains [68.8204255655161]
我々はマルコフ・チェインにインスパイアされた新しい非パラメトリック密度推定器を導入し、よく知られたケルネル密度推定器を一般化する。
我々の推定器は, 通常のものに対していくつかの利点を示し, 全密度アルゴリズムの基盤として容易に利用できる。
論文 参考訳(メタデータ) (2020-09-08T18:33:42Z) - Mix Dimension in Poincar\'{e} Geometry for 3D Skeleton-based Action
Recognition [57.98278794950759]
グラフ畳み込みネットワーク(GCN)はすでに、不規則なデータをモデル化する強力な能力を実証している。
本稿では,ポアンカー幾何学を用いて定義した空間時空間GCNアーキテクチャを提案する。
提案手法を,現在最大規模の2つの3次元データセット上で評価する。
論文 参考訳(メタデータ) (2020-07-30T18:23:18Z) - Roundtrip: A Deep Generative Neural Density Estimator [6.704101978104295]
本研究では,深部生成モデルに基づく汎用神経密度推定器として,ラウンドトリップを提案する。
一連の実験において、ラウンドトリップは様々な密度推定タスクにおいて最先端の性能を達成する。
論文 参考訳(メタデータ) (2020-04-20T01:47:00Z) - When Residual Learning Meets Dense Aggregation: Rethinking the
Aggregation of Deep Neural Networks [57.0502745301132]
我々は,グローバルな残差学習と局所的なマイクロセンスアグリゲーションを備えた新しいアーキテクチャであるMicro-Dense Netsを提案する。
我々のマイクロセンスブロックはニューラルアーキテクチャ検索に基づくモデルと統合して性能を向上させることができる。
論文 参考訳(メタデータ) (2020-04-19T08:34:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。