論文の概要: On the Benefits of Models with Perceptually-Aligned Gradients
- arxiv url: http://arxiv.org/abs/2005.01499v1
- Date: Mon, 4 May 2020 14:05:38 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-07 00:20:27.076187
- Title: On the Benefits of Models with Perceptually-Aligned Gradients
- Title(参考訳): 知覚的配向モデルの有効性について
- Authors: Gunjan Aggarwal, Abhishek Sinha, Nupur Kumari, Mayank Singh
- Abstract要約: 敵攻撃に対する強靭性を示さないモデルにおいても,解釈的かつ知覚的に整合した勾配が存在することを示す。
解釈可能な知覚整合性を持つモデルを活用し、最大摂動境界の低い対角トレーニングがゼロショットおよび弱教師付きローカライゼーションタスクのモデルの性能を向上させることを示す。
- 参考スコア(独自算出の注目度): 8.427953227125148
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Adversarial robust models have been shown to learn more robust and
interpretable features than standard trained models. As shown in
[\cite{tsipras2018robustness}], such robust models inherit useful interpretable
properties where the gradient aligns perceptually well with images, and adding
a large targeted adversarial perturbation leads to an image resembling the
target class. We perform experiments to show that interpretable and
perceptually aligned gradients are present even in models that do not show high
robustness to adversarial attacks. Specifically, we perform adversarial
training with attack for different max-perturbation bound. Adversarial training
with low max-perturbation bound results in models that have interpretable
features with only slight drop in performance over clean samples. In this
paper, we leverage models with interpretable perceptually-aligned features and
show that adversarial training with low max-perturbation bound can improve the
performance of models for zero-shot and weakly supervised localization tasks.
- Abstract(参考訳): 敵対的ロバストモデルは、標準訓練されたモデルよりも堅牢で解釈可能な特徴を学ぶことが示されている。
上述の[\cite{tsipras2018robustness}] に示すように、そのような頑健なモデルは、勾配がイメージと知覚的にうまく整合する有用な解釈可能な性質を継承し、大きな対向摂動を加えると、ターゲットクラスに類似したイメージとなる。
敵攻撃に対する強靭性を示さないモデルにおいても、解釈可能かつ知覚的に整合した勾配が存在することを示す実験を行った。
具体的には,max-perturbationバウンドの異なる攻撃を交互に行う。
低最大摂動境界を持つ逆トレーニングは、クリーンサンプルよりもわずかに性能が低下した解釈可能な特徴を持つモデルに結果を与える。
本稿では,解釈可能な知覚整合性を持つモデルを活用し,最大摂動境界の低い対角トレーニングがゼロショットおよび弱教師付きローカライゼーションタスクのモデルの性能を向上させることを示す。
関連論文リスト
- Reinforcing Pre-trained Models Using Counterfactual Images [54.26310919385808]
本稿では,言語誘導型生成対実画像を用いた分類モデル強化のための新しいフレームワークを提案する。
逆ファクト画像データセットを用いてモデルをテストすることにより、モデルの弱点を同定する。
我々は、分類モデルを微調整し強化するために、デファクトイメージを拡張データセットとして採用する。
論文 参考訳(メタデータ) (2024-06-19T08:07:14Z) - Pre-trained Model Guided Fine-Tuning for Zero-Shot Adversarial Robustness [52.9493817508055]
我々は,モデルがゼロショットの逆方向のロバスト性を高めるために,事前訓練されたモデル誘導逆方向の微調整(PMG-AFT)を提案する。
私たちのアプローチは、平均8.72%のクリーンな精度を継続的に改善します。
論文 参考訳(メタデータ) (2024-01-09T04:33:03Z) - Interpretable Computer Vision Models through Adversarial Training:
Unveiling the Robustness-Interpretability Connection [0.0]
解釈可能性は、モデルを現実世界にデプロイする際には、堅牢性と同じくらい不可欠です。
標準モデルは、ロバストと比較して敵の攻撃に対してより感受性が高く、その学習された表現は人間にはあまり意味がない。
論文 参考訳(メタデータ) (2023-07-04T13:51:55Z) - Does Saliency-Based Training bring Robustness for Deep Neural Networks
in Image Classification? [0.0]
Deep Neural Networksのブラックボックスの性質は、内部動作の完全な理解を妨げる。
オンラインサリエンシ誘導トレーニング手法は、この問題を軽減するために、モデルのアウトプットの顕著な特徴を強調しようとする。
我々は、ロバスト性を定量化し、モデル出力のよく説明された視覚化にもかかわらず、健全なモデルは敵のサンプル攻撃に対して低い性能に苦しむと結論づける。
論文 参考訳(メタデータ) (2023-06-28T22:20:19Z) - On Evaluating the Adversarial Robustness of Semantic Segmentation Models [0.0]
敵の摂動に対する防御手段として、多くの敵の訓練アプローチが提案されている。
私たちは、前回の作業で堅牢であると主張するモデルが、実際にはまったく堅牢ではないことを初めて示しています。
次に, 強攻撃群においても, 合理的に堅牢なモデルを生成する, 単純な対向訓練アルゴリズムを評価する。
論文 参考訳(メタデータ) (2023-06-25T11:45:08Z) - No One Representation to Rule Them All: Overlapping Features of Training
Methods [12.58238785151714]
ハイパフォーマンスモデルは、トレーニング方法論に関係なく、同様の予測をする傾向があります。
近年の研究では、大規模なコントラスト学習など、非常に異なるトレーニングテクニックが、競争的に高い精度で実現されている。
これらのモデルはデータの一般化に特化しており、より高いアンサンブル性能をもたらす。
論文 参考訳(メタデータ) (2021-10-20T21:29:49Z) - Unleashing the Power of Contrastive Self-Supervised Visual Models via
Contrast-Regularized Fine-Tuning [94.35586521144117]
コントラスト学習を微調整に適用することでさらにメリットが得られるか検討する。
本研究では,コントラスト正規化調律(core-tuning)を提案する。
論文 参考訳(メタデータ) (2021-02-12T16:31:24Z) - Stereopagnosia: Fooling Stereo Networks with Adversarial Perturbations [71.00754846434744]
知覚不能な加法的摂動は,差分マップを著しく変更できることを示す。
敵データ拡張に使用すると、我々の摂動はより堅牢なトレーニングされたモデルをもたらすことを示す。
論文 参考訳(メタデータ) (2020-09-21T19:20:09Z) - Orthogonal Deep Models As Defense Against Black-Box Attacks [71.23669614195195]
攻撃者が標的モデルに類似したモデルを用いて攻撃を発生させるブラックボックス設定における深層モデル固有の弱点について検討する。
本稿では,深部モデルの内部表現を他のモデルに直交させる新しい勾配正規化手法を提案する。
様々な大規模モデルにおいて,本手法の有効性を検証する。
論文 参考訳(メタデータ) (2020-06-26T08:29:05Z) - Regularizers for Single-step Adversarial Training [49.65499307547198]
本稿では,1ステップの対数学習手法を用いて,ロバストモデル学習を支援する3種類の正則化器を提案する。
正規化器は、ロバストモデルと擬ロバストモデルとを区別する特性を利用することにより、勾配マスキングの効果を緩和する。
論文 参考訳(メタデータ) (2020-02-03T09:21:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。