論文の概要: Recurrent Conditional Heteroskedasticity
- arxiv url: http://arxiv.org/abs/2010.13061v2
- Date: Sat, 22 Jan 2022 02:41:44 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-03 05:05:50.478472
- Title: Recurrent Conditional Heteroskedasticity
- Title(参考訳): 再発性条件性ヘテロスケルキスティック性
- Authors: T.-N. Nguyen, M.-N. Tran, and R. Kohn
- Abstract要約: 本稿では,Recurrent Conditional Heteroskedastic(RECH)モデルと呼ばれる新たな金融変動モデルを提案する。
特に、リカレントニューラルネットワークが支配する補助的決定過程を、従来の条件付きヘテロスケダスティックモデルの条件分散に組み込む。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a new class of financial volatility models, called the REcurrent
Conditional Heteroskedastic (RECH) models, to improve both in-sample analysis
and out-ofsample forecasting of the traditional conditional heteroskedastic
models. In particular, we incorporate auxiliary deterministic processes,
governed by recurrent neural networks, into the conditional variance of the
traditional conditional heteroskedastic models, e.g. GARCH-type models, to
flexibly capture the dynamics of the underlying volatility. RECH models can
detect interesting effects in financial volatility overlooked by the existing
conditional heteroskedastic models such as the GARCH, GJR and EGARCH. The new
models often have good out-of-sample forecasts while still explaining well the
stylized facts of financial volatility by retaining the well-established
features of econometric GARCH-type models. These properties are illustrated
through simulation studies and applications to thirty-one stock indices and
exchange rate data. . An user-friendly software package together with the
examples reported in the paper are available at https://github.com/vbayeslab.
- Abstract(参考訳): recurrent conditional heteroskedastic(rech)モデルと呼ばれる新しい金融変動モデルを提案し、従来の条件付きヘテロケクタスティックモデルのサンプル内分析とサンプル外予測の両方を改善した。
特に,再帰的ニューラルネットワークによって制御される補助決定論的過程を,従来の条件付きヘテロケクタスティックモデル(例えばgarch型モデル)の条件分散に組み込んで,基盤となるボラティリティのダイナミクスを柔軟に捉える。
RECHモデルは、GARCH、GJR、EGARCHといった既存の条件付きヘテロスケダスティックモデルによって見落とされた金融ボラティリティの興味深い影響を検出することができる。
この新しいモデルは、しばしばサンプル外予測が良いが、しかしながら、経済変動のスタイル化された事実は、計量的GARCH型モデルの確立した特徴を維持している。
これらの特性はシミュレーション研究によって示され、31の株価指数と為替レートデータに適用される。
.
論文で報告された例とともに、ユーザフレンドリーなソフトウェアパッケージがhttps://github.com/vbayeslab.comで入手できる。
関連論文リスト
- On conditional diffusion models for PDE simulations [53.01911265639582]
スパース観測の予測と同化のためのスコアベース拡散モデルについて検討した。
本稿では,予測性能を大幅に向上させる自動回帰サンプリング手法を提案する。
また,条件付きスコアベースモデルに対する新たなトレーニング戦略を提案する。
論文 参考訳(メタデータ) (2024-10-21T18:31:04Z) - GARCH-Informed Neural Networks for Volatility Prediction in Financial Markets [0.0]
マーケットのボラティリティを計測し、予測する新しいハイブリッドなDeep Learningモデルを提案する。
他の時系列モデルと比較すると、GINNは決定係数(R2$)、平均正方形誤差(MSE)、平均絶対誤差(MAE)の点で優れたサンプル外予測性能を示した。
論文 参考訳(メタデータ) (2024-09-30T23:53:54Z) - ChiroDiff: Modelling chirographic data with Diffusion Models [132.5223191478268]
チャーログラフィーデータのための強力なモデルクラスである「拡散確率モデル(Denoising Diffusion Probabilistic Models)」やDDPMを導入している。
我々のモデルは「ChiroDiff」と呼ばれ、非自己回帰的であり、全体論的概念を捉えることを学び、したがって高い時間的サンプリングレートに回復する。
論文 参考訳(メタデータ) (2023-04-07T15:17:48Z) - Volatility Based Kernels and Moving Average Means for Accurate
Forecasting with Gaussian Processes [36.712632126776285]
本稿では, ボラティリティモデルのクラスを, 特殊共分散関数を持つ階層型ガウス過程(GP)モデルとして再キャストする方法を示す。
このフレームワーク内では、よく研究されたドメインからインスピレーションを得て、ストックおよび風速予測においてベースラインを著しく上回る新しいモデルのVoltとMagpieを導入する。
論文 参考訳(メタデータ) (2022-07-13T23:02:54Z) - Forecasting High-Dimensional Covariance Matrices of Asset Returns with
Hybrid GARCH-LSTMs [0.0]
本稿では,GARCHプロセスとニューラルネットワークを混合したハイブリッドモデルによるアセットリターンの共分散行列の予測能力について検討する。
提案された新しいモデルは、均等に重み付けされたポートフォリオを上回るだけでなく、エコノメトリとかなり差があるため、非常に有望である。
論文 参考訳(メタデータ) (2021-08-25T23:41:43Z) - Closed-form Continuous-Depth Models [99.40335716948101]
連続深度ニューラルモデルは高度な数値微分方程式解法に依存している。
我々は,CfCネットワークと呼ばれる,記述が簡単で,少なくとも1桁高速な新しいモデル群を提示する。
論文 参考訳(メタデータ) (2021-06-25T22:08:51Z) - Anomaly Detection of Time Series with Smoothness-Inducing Sequential
Variational Auto-Encoder [59.69303945834122]
Smoothness-Inducing Sequential Variational Auto-Encoder (SISVAE) モデルを提案する。
我々のモデルは、フレキシブルニューラルネットワークを用いて各タイムスタンプの平均と分散をパラメータ化する。
合成データセットと公開実世界のベンチマークの両方において,本モデルの有効性を示す。
論文 参考訳(メタデータ) (2021-02-02T06:15:15Z) - Generative Temporal Difference Learning for Infinite-Horizon Prediction [101.59882753763888]
我々は、無限確率的地平線を持つ環境力学の予測モデルである$gamma$-modelを導入する。
トレーニングタイムとテストタイムの複合的なエラーの間には、そのトレーニングが避けられないトレードオフを反映しているかについて議論する。
論文 参考訳(メタデータ) (2020-10-27T17:54:12Z) - Improving the Reconstruction of Disentangled Representation Learners via Multi-Stage Modeling [54.94763543386523]
現在の自己エンコーダに基づく非絡み合い表現学習法は、(集合体)後部をペナルティ化し、潜伏因子の統計的独立を促進することで、非絡み合いを実現する。
本稿では,不整合因子をペナルティに基づく不整合表現学習法を用いて学習する,新しい多段階モデリング手法を提案する。
次に、低品質な再構成を、欠落した関連潜伏変数をモデル化するために訓練された別の深層生成モデルで改善する。
論文 参考訳(メタデータ) (2020-10-25T18:51:15Z) - A Data-driven Market Simulator for Small Data Environments [0.5872014229110214]
ニューラルネットワークに基づくデータ駆動市場シミュレーションは、金融時系列をモデリングする新しいフレキシブルな方法を公開する。
本稿では,財務時系列のエンコーディングと評価を行う強力な方法として,大まかなパスパースペクティブと擬似変分自動エンコーダフレームワークが組み合わさった方法を示す。
論文 参考訳(メタデータ) (2020-06-21T14:04:21Z) - A generative adversarial network approach to calibration of local
stochastic volatility models [2.1485350418225244]
局所ボラティリティ(LSV)モデルのキャリブレーションのための完全データ駆動手法を提案する。
我々は、フィードフォワードニューラルネットワークのファミリーによってレバレッジ関数をパラメータ化し、利用可能な市場オプション価格から直接パラメータを学習する。
これは、ニューラルSDEと(因果)生成的敵ネットワークの文脈で見る必要がある。
論文 参考訳(メタデータ) (2020-05-05T21:26:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。