Revealing the Berry phase under the tunneling barrier
- URL: http://arxiv.org/abs/2408.03105v1
- Date: Tue, 6 Aug 2024 11:18:04 GMT
- Title: Revealing the Berry phase under the tunneling barrier
- Authors: Lior Faeyrman, Eduardo B. Molinero, Roni Weiss, Vladimir Narovlansky, Omer Kneller, Talya Arusi-Parpar, Barry D. Bruner, Binghai Yan, Misha Ivanov, Olga Smirnova, Alvaro Jimenez-Galan, Riccardo Piccoli, Rui E. F. Silva, Nirit Dudovich, Ayelet J. Uzan-Narovlansky,
- Abstract summary: In quantum mechanics, a quantum wavepacket may acquire a geometrical phase as it evolves.
In condensed matter systems, the Berry phase plays a crucial role in fundamental phenomena.
We observe a complex-valued Berry phase via strong field light matter interactions in condensed matter systems.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In quantum mechanics, a quantum wavepacket may acquire a geometrical phase as it evolves along a cyclic trajectory in parameter space. In condensed matter systems, the Berry phase plays a crucial role in fundamental phenomena such as the Hall effect, orbital magnetism, and polarization. Resolving the quantum nature of these processes commonly requires sensitive quantum techniques, as tunneling, being the dominant mechanism in STM microscopy and tunneling transport devices. In this study, we integrate these two phenomena - geometrical phases and tunneling - and observe a complex-valued Berry phase via strong field light matter interactions in condensed matter systems. By manipulating the tunneling barrier, with attoseconds precision, we measure the imaginary Berry phase accumulated as the electron tunnels during a fraction of the optical cycle. Our work opens new theoretical and experimental directions in geometrical phases physics and their realization in condensed matter systems, expanding solid state strong field light metrology to study topological quantum phenomena.
Related papers
- Constructing the spin-1 Haldane phase on a qudit quantum processor [0.0]
We use trapped-ion qutrits to engineer spin-1 chains within the Haldane phase.
We study the topological features of this system on a qudit quantum processor.
arXiv Detail & Related papers (2024-08-08T18:00:49Z) - Floquet interferometry of a dressed semiconductor quantum dot [0.7852714805965528]
We demonstrate state dressing in a semiconductor quantum dot tunnel-coupled to a charge reservoir.
We develop a theory based on the quantum dynamics of the Floquet ladder.
We show how the technique finds applications in the accurate electrostatic characterisation of semiconductor quantum dots.
arXiv Detail & Related papers (2024-07-19T12:20:30Z) - Experimental observation of spontaneous symmetry breaking in a quantum phase transition [2.2706551270477613]
Spontaneous symmetry breaking plays a central role in understanding a large variety of phenomena associated with phase transitions.
We report an experimental demonstration of such a process with a quantum Rabi model engineered with a superconducting circuit.
Results demonstrate that the environment-induced decoherence plays a critical role in the SSB.
arXiv Detail & Related papers (2024-06-28T03:14:27Z) - Geometric phases along quantum trajectories [58.720142291102135]
We study the distribution function of geometric phases in monitored quantum systems.
For the single trajectory exhibiting no quantum jumps, a topological transition in the phase acquired after a cycle.
For the same parameters, the density matrix does not show any interference.
arXiv Detail & Related papers (2023-01-10T22:05:18Z) - Tunable photon-mediated interactions between spin-1 systems [68.8204255655161]
We show how to harness multi-level emitters with several optical transitions to engineer photon-mediated interactions between effective spin-1 systems.
Our results expand the quantum simulation toolbox available in cavity QED and quantum nanophotonic setups.
arXiv Detail & Related papers (2022-06-03T14:52:34Z) - Waveguide quantum optomechanics: parity-time phase transitions in
ultrastrong coupling regime [125.99533416395765]
We show that the simplest set-up of two qubits, harmonically trapped over an optical waveguide, enables the ultrastrong coupling regime of the quantum optomechanical interaction.
The combination of the inherent open nature of the system and the strong optomechanical coupling leads to emerging parity-time (PT) symmetry.
The $mathcalPT$ phase transition drives long-living subradiant states, observable in the state-of-the-art waveguide QED setups.
arXiv Detail & Related papers (2020-07-04T11:02:20Z) - Dynamical tunnelling of a Nano-mechanical Oscillator [0.0]
We show that tunnelling rates sensitively depend on the ability of the quantum system to resolve the underlying classical phase space.
We show that the effective Planck's constant, which determines this phase space resolution, can be varied over orders of magnitude.
We demonstrate that a mixed regular and chaotic phase space can be engineered in one spatial dimension.
arXiv Detail & Related papers (2020-06-25T15:21:58Z) - Circuit Quantum Electrodynamics [62.997667081978825]
Quantum mechanical effects at the macroscopic level were first explored in Josephson junction-based superconducting circuits in the 1980s.
In the last twenty years, the emergence of quantum information science has intensified research toward using these circuits as qubits in quantum information processors.
The field of circuit quantum electrodynamics (QED) has now become an independent and thriving field of research in its own right.
arXiv Detail & Related papers (2020-05-26T12:47:38Z) - Floquet engineering and simulating exceptional rings with a quantum spin
system [6.746560936185888]
Time-periodic driving in the form of coherent radiation provides powerful tool for the manipulation of topological materials or synthetic quantum matter.
We propose a scheme to realize non-Hermitian semimetals exhibiting exceptional rings in the spectra through Floquet engineering.
arXiv Detail & Related papers (2020-05-06T10:16:20Z) - Exploring 2D synthetic quantum Hall physics with a quasi-periodically
driven qubit [58.720142291102135]
Quasi-periodically driven quantum systems are predicted to exhibit quantized topological properties.
We experimentally study a synthetic quantum Hall effect with a two-tone drive.
arXiv Detail & Related papers (2020-04-07T15:00:41Z) - Quantum Hall phase emerging in an array of atoms interacting with
photons [101.18253437732933]
Topological quantum phases underpin many concepts of modern physics.
Here, we reveal that the quantum Hall phase with topological edge states, spectral Landau levels and Hofstadter butterfly can emerge in a simple quantum system.
Such systems, arrays of two-level atoms (qubits) coupled to light being described by the classical Dicke model, have recently been realized in experiments with cold atoms and superconducting qubits.
arXiv Detail & Related papers (2020-03-18T14:56:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.