論文の概要: CARL: Controllable Agent with Reinforcement Learning for Quadruped
Locomotion
- arxiv url: http://arxiv.org/abs/2005.03288v3
- Date: Tue, 5 Jan 2021 05:10:27 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-05 22:56:59.345727
- Title: CARL: Controllable Agent with Reinforcement Learning for Quadruped
Locomotion
- Title(参考訳): carl: 強化学習を用いた四足歩行制御エージェント
- Authors: Ying-Sheng Luo (1), Jonathan Hans Soeseno (1), Trista Pei-Chun Chen
(1), Wei-Chao Chen (1, 2) ((1) Inventec Corp. (2) Skywatch Innovation Inc.)
- Abstract要約: CARLは、高レベルの指示で制御でき、動的環境に自然に反応できる4重結合剤である。
我々は、ジェネレーティブ・アドリラル・ネットワークを使用して、速度や方向などのハイレベルな制御を、オリジナルのアニメーションに対応するアクション・ディストリビューションに適応させる。
深部強化学習によるさらなる微調整により、エージェントは、スムーズな遷移を発生させながら、目に見えない外部摂動から回復することができる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Motion synthesis in a dynamic environment has been a long-standing problem
for character animation. Methods using motion capture data tend to scale poorly
in complex environments because of their larger capturing and labeling
requirement. Physics-based controllers are effective in this regard, albeit
less controllable. In this paper, we present CARL, a quadruped agent that can
be controlled with high-level directives and react naturally to dynamic
environments. Starting with an agent that can imitate individual animation
clips, we use Generative Adversarial Networks to adapt high-level controls,
such as speed and heading, to action distributions that correspond to the
original animations. Further fine-tuning through the deep reinforcement
learning enables the agent to recover from unseen external perturbations while
producing smooth transitions. It then becomes straightforward to create
autonomous agents in dynamic environments by adding navigation modules over the
entire process. We evaluate our approach by measuring the agent's ability to
follow user control and provide a visual analysis of the generated motion to
show its effectiveness.
- Abstract(参考訳): 動的環境における動き合成はキャラクタアニメーションの長年の問題となっている。
モーションキャプチャーデータを使用する手法は、そのより大きなキャプチャーとラベリング要件のため、複雑な環境ではスケールしにくい傾向がある。
物理ベースのコントローラーはこの点では有効だが、制御性は低い。
本稿では,高次ディレクティブで制御し,動的環境に自然に反応する四重化剤CARLを提案する。
個々のアニメーションクリップを模倣するエージェントから始め、生成的な敵ネットワークを使用して、速度や方向といったハイレベルなコントロールを、元のアニメーションに対応するアクションディストリビューションに適応させます。
深層強化学習によるさらなる微調整により、エージェントはスムーズな遷移を発生しながら、目に見えない外部摂動から回復することができる。
そして、プロセス全体にナビゲーションモジュールを追加することで、動的環境で自律エージェントを作成するのが簡単になります。
提案手法は,ユーザ制御に追従するエージェントの能力を測定し,その効果を示すために生成した動作の視覚的分析を行う。
関連論文リスト
- RoboKoop: Efficient Control Conditioned Representations from Visual Input in Robotics using Koopman Operator [14.77553682217217]
本研究では,高次元潜在空間におけるエージェントの視覚データから効率的な線形化視覚表現を学習するコントラストスペクトル・クープマン埋め込みネットワークを提案する。
本手法は、時間とともに勾配力学の安定性と制御を向上し、既存の手法よりも大幅に優れている。
論文 参考訳(メタデータ) (2024-09-04T22:14:59Z) - FLD: Fourier Latent Dynamics for Structured Motion Representation and
Learning [19.491968038335944]
本研究では,周期的・準周期的な動きの時空間関係を抽出する自己教師付き構造表現生成手法を提案する。
我々の研究は、一般的な動き表現と学習アルゴリズムの今後の進歩への新たな可能性を開く。
論文 参考訳(メタデータ) (2024-02-21T13:59:21Z) - TrackDiffusion: Tracklet-Conditioned Video Generation via Diffusion Models [75.20168902300166]
微粒な軌跡条件の運動制御が可能な新しい映像生成フレームワークであるTrackDiffusionを提案する。
TrackDiffusionの重要なコンポーネントは、複数のオブジェクトのフレーム間の一貫性を明確に保証するインスタンスエンハンサーである。
TrackDiffusionによって生成されたビデオシーケンスは、視覚知覚モデルのトレーニングデータとして使用できる。
論文 参考訳(メタデータ) (2023-12-01T15:24:38Z) - SceneDM: Scene-level Multi-agent Trajectory Generation with Consistent
Diffusion Models [10.057312592344507]
本研究では,SceneDMと呼ばれる拡散モデルに基づく新しいフレームワークを提案する。
SceneDMはSim Agents Benchmarkで最先端の結果を得る。
論文 参考訳(メタデータ) (2023-11-27T11:39:27Z) - Universal Humanoid Motion Representations for Physics-Based Control [71.46142106079292]
物理学に基づくヒューマノイド制御のための総合的な運動スキルを含む普遍的な運動表現を提案する。
まず、大きな非構造運動データセットから人間の動きをすべて模倣できる動き模倣機を学習する。
次に、模倣者から直接スキルを蒸留することで、動作表現を作成します。
論文 参考訳(メタデータ) (2023-10-06T20:48:43Z) - Motion In-Betweening with Phase Manifolds [29.673541655825332]
本稿では,周期的オートエンコーダによって学習された位相変数を利用して,文字のターゲットポーズに到達するための,新たなデータ駆動型動作制御システムを提案する。
提案手法では,経験的ニューラルネットワークモデルを用いて,空間と時間の両方のクラスタの動きを,異なる専門家の重みで解析する。
論文 参考訳(メタデータ) (2023-08-24T12:56:39Z) - CALM: Conditional Adversarial Latent Models for Directable Virtual
Characters [71.66218592749448]
本研究では,ユーザが制御する対話型仮想キャラクタに対して,多種多様かつ指示可能な振る舞いを生成するための条件付き適応潜在モデル(CALM)を提案する。
模倣学習を用いて、CALMは人間の動きの複雑さを捉える動きの表現を学び、キャラクターの動きを直接制御できる。
論文 参考訳(メタデータ) (2023-05-02T09:01:44Z) - A Policy Iteration Approach for Flock Motion Control [5.419608513284392]
全体的な制御プロセスは、群れの粘着性と局在性を監視しながらエージェントを誘導する。
ここでは、独立したコマンドジェネレータに従うためにエージェント群を誘導するために、オンラインモデルフリーのポリシーイテレーションメカニズムが開発されている。
政策反復機構のシミュレーション結果から,計算労力の少ない高速学習と収束挙動が明らかになった。
論文 参考訳(メタデータ) (2023-03-17T15:04:57Z) - GEM: Group Enhanced Model for Learning Dynamical Control Systems [78.56159072162103]
サンプルベースの学習が可能な効果的なダイナミクスモデルを構築します。
リー代数ベクトル空間上のダイナミクスの学習は、直接状態遷移モデルを学ぶよりも効果的であることを示す。
この研究は、ダイナミクスの学習とリー群の性質の関連性を明らかにし、新たな研究の方向への扉を開く。
論文 参考訳(メタデータ) (2021-04-07T01:08:18Z) - AMP: Adversarial Motion Priors for Stylized Physics-Based Character
Control [145.61135774698002]
我々は,与えられたシナリオで追跡するキャラクタの動作を選択するための完全自動化手法を提案する。
キャラクタが実行するべきハイレベルなタスク目標は、比較的単純な報酬関数によって指定できる。
キャラクタの動作の低レベルスタイルは、非構造化モーションクリップのデータセットによって指定できる。
本システムでは,最先端のトラッキング技術に匹敵する高品質な動作を生成する。
論文 参考訳(メタデータ) (2021-04-05T22:43:14Z) - ReLMoGen: Leveraging Motion Generation in Reinforcement Learning for
Mobile Manipulation [99.2543521972137]
ReLMoGenは、サブゴールを予測するための学習されたポリシーと、これらのサブゴールに到達するために必要な動作を計画し実行するためのモーションジェネレータを組み合わせたフレームワークである。
本手法は,フォトリアリスティック・シミュレーション環境における7つのロボットタスクの多種多様なセットをベンチマークする。
ReLMoGenは、テスト時に異なるモーションジェネレータ間で顕著な転送可能性を示し、実際のロボットに転送する大きな可能性を示している。
論文 参考訳(メタデータ) (2020-08-18T08:05:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。