論文の概要: Estimating Blood Pressure from Photoplethysmogram Signal and Demographic
Features using Machine Learning Techniques
- arxiv url: http://arxiv.org/abs/2005.03357v1
- Date: Thu, 7 May 2020 09:45:02 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-06 00:09:26.219628
- Title: Estimating Blood Pressure from Photoplethysmogram Signal and Demographic
Features using Machine Learning Techniques
- Title(参考訳): 機械学習を用いた光胸腺X線信号と画像特徴からの血圧推定
- Authors: Moajjem Hossain Chowdhury, Md Nazmul Islam Shuzan, Muhammad E.H.
Chowdhury, Zaid B Mahbub, M. Monir Uddin, Amith Khandakar, Mamun Bin Ibne
Reaz
- Abstract要約: 高血圧は潜在的に安全でない健康障害であり、血圧(BP)から直接示すことができる
BPの連続的なモニタリングは非常に重要であるが、BP測定は離散的であり、ユーザにとって不快である。
このニーズに対処するために、カフレス、連続、非侵襲的なBP測定システムを提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Hypertension is a potentially unsafe health ailment, which can be indicated
directly from the Blood pressure (BP). Hypertension always leads to other
health complications. Continuous monitoring of BP is very important; however,
cuff-based BP measurements are discrete and uncomfortable to the user. To
address this need, a cuff-less, continuous and a non-invasive BP measurement
system is proposed using Photoplethysmogram (PPG) signal and demographic
features using machine learning (ML) algorithms. PPG signals were acquired from
219 subjects, which undergo pre-processing and feature extraction steps. Time,
frequency and time-frequency domain features were extracted from the PPG and
their derivative signals. Feature selection techniques were used to reduce the
computational complexity and to decrease the chance of over-fitting the ML
algorithms. The features were then used to train and evaluate ML algorithms.
The best regression models were selected for Systolic BP (SBP) and Diastolic BP
(DBP) estimation individually. Gaussian Process Regression (GPR) along with
ReliefF feature selection algorithm outperforms other algorithms in estimating
SBP and DBP with a root-mean-square error (RMSE) of 6.74 and 3.59 respectively.
This ML model can be implemented in hardware systems to continuously monitor BP
and avoid any critical health conditions due to sudden changes.
- Abstract(参考訳): 高血圧は潜在的に安全でない健康障害であり、血圧(BP)から直接示すことができる。
高血圧は常に他の健康合併症を引き起こす。
BPの連続モニタリングは非常に重要であるが、カフベースのBP測定はユーザにとって離散的で不快である。
このニーズに対処するために、フォトプルチスモグラム(PPG)信号と機械学習(ML)アルゴリズムを用いて、カフレス、連続、非侵襲的なBP測定システムを提案する。
PPG信号は219名の被験者から取得され, 前処理と特徴抽出を行った。
PPGとその派生信号から時間・周波数・周波数領域の特徴を抽出した。
特徴選択技術は計算複雑性を減らし、MLアルゴリズムを過度に適合させる可能性を減らすために用いられた。
その後、MLアルゴリズムのトレーニングと評価に使用された。
最適な回帰モデルがSystolic BP (SBP) とDistolic BP (DBP) でそれぞれ選択された。
ガウス過程回帰(GPR)とReliefF特徴選択アルゴリズムは、それぞれ6.74と3.59のルート平均二乗誤差(RMSE)でSBPとDBPを推定する他のアルゴリズムよりも優れている。
このMLモデルはハードウェアシステムに実装でき、BPを継続的に監視し、突然の変化による重大な健康状態を回避することができる。
関連論文リスト
- A Finger on the Pulse of Cardiovascular Health: Estimating Blood Pressure with Smartphone Photoplethysmography-Based Pulse Waveform Analysis [2.4347312660509672]
本研究は, 血圧推定のためのスマートフォンを用いた光プラチスモグラフィー(SPW-BP)の革新的4つの戦略を提案する。
我々は,高次正規化やデータ削除,境界信号再構成など,しばしば無視されるデータ品質改善技術を採用している。
相関とSHAP分析はBP推定を改善するための重要な特徴を同定した。
しかし, Bland-Altman 分析では系統的偏りがみられ, MAE 解析ではAAMI と BHS の精度基準を満たしていないことがわかった。
論文 参考訳(メタデータ) (2024-01-20T05:05:17Z) - Belief Propagation Decoding of Quantum LDPC Codes with Guided Decimation [55.8930142490617]
BPガイドデシミテーション(BPGD)に基づくQLDPC符号のデコーダを提案する。
BPGDは非収束によるBP故障率を著しく低下させる。
論文 参考訳(メタデータ) (2023-12-18T05:58:07Z) - Quantifying predictive uncertainty of aphasia severity in stroke patients with sparse heteroscedastic Bayesian high-dimensional regression [47.1405366895538]
高次元データに対する疎線型回帰法は、通常、残留物が一定の分散を持つと仮定するが、これは実際には破ることができる。
本稿では,ヘテロセダスティック分割経験的ベイズ期待条件最大化アルゴリズムを用いて,高次元ヘテロセダスティック線形回帰モデルを推定する。
論文 参考訳(メタデータ) (2023-09-15T22:06:29Z) - Provably Efficient UCB-type Algorithms For Learning Predictive State
Representations [55.00359893021461]
逐次決定問題は、予測状態表現(PSR)によってモデル化された低ランク構造が認められる場合、統計的に学習可能である
本稿では,推定モデルと実モデル間の全変動距離を上限とする新しいボーナス項を特徴とする,PSRに対する最初のUCB型アプローチを提案する。
PSRに対する既存のアプローチとは対照的に、UCB型アルゴリズムは計算的トラクタビリティ、最優先の準最適ポリシー、モデルの精度が保証される。
論文 参考訳(メタデータ) (2023-07-01T18:35:21Z) - An In-depth Study of Stochastic Backpropagation [44.953669040828345]
本稿では,標準画像分類および物体検出タスクのための深層ニューラルネットワークのトレーニングにおいて,バックプロパゲーション(SBP)について検討する。
後方伝播中、SBPはGPUメモリと計算コストを節約するために、機能マップのサブセットのみを使用することで勾配を計算する。
画像分類とオブジェクト検出の実験は、SBPが最大40%のGPUメモリを1%未満の精度で保存できることを示している。
論文 参考訳(メタデータ) (2022-09-30T23:05:06Z) - StRegA: Unsupervised Anomaly Detection in Brain MRIs using a Compact
Context-encoding Variational Autoencoder [48.2010192865749]
教師なし異常検出(UAD)は、健康な被験者の異常なデータセットからデータ分布を学習し、分布サンプルの抽出に応用することができる。
本研究では,コンテクストエンコーディング(context-encoding)VAE(ceVAE)モデルのコンパクトバージョンと,前処理と後処理のステップを組み合わせて,UADパイプライン(StRegA)を作成することを提案する。
提案したパイプラインは、BraTSデータセットのT2w画像と0.859$pm$0.112の腫瘍を検出しながら、Diceスコアが0.642$pm$0.101に達した。
論文 参考訳(メタデータ) (2022-01-31T14:27:35Z) - A Shallow U-Net Architecture for Reliably Predicting Blood Pressure (BP)
from Photoplethysmogram (PPG) and Electrocardiogram (ECG) Signals [1.1695966610359496]
病院で血液圧(BP)の連続モニタリングに使われている方法のほとんどは、侵襲的である。
本研究では,光胸腺図や心電図などの非侵襲的に収集可能な信号からBPを予測するためのオートエンコーダの適用性を検討した。
非常に浅い1次元オートエンコーダは、非常に大きなデータセット上で最先端の性能でSBPとDBPを予測するために関連する特徴を抽出できることがわかった。
論文 参考訳(メタデータ) (2021-11-12T19:34:20Z) - Lung Cancer Lesion Detection in Histopathology Images Using Graph-Based
Sparse PCA Network [93.22587316229954]
ヘマトキシリンとエオシン(H&E)で染色した組織学的肺スライドにおける癌病変の自動検出のためのグラフベーススパース成分分析(GS-PCA)ネットワークを提案する。
我々は,SVM K-rasG12D肺がんモデルから得られたH&Eスライダーの精度・リコール率,Fスコア,谷本係数,レシーバ演算子特性(ROC)の曲線下領域を用いて,提案アルゴリズムの性能評価を行った。
論文 参考訳(メタデータ) (2021-10-27T19:28:36Z) - A Novel Clustering-Based Algorithm for Continuous and Non-invasive
Cuff-Less Blood Pressure Estimation [0.0]
心電図(ECG)信号と動脈血圧(ABP)データから抽出した特徴に基づく血圧推定法を開発した。
クラスタリング手法を適用して, モデル作成の精度を高く評価し, 比較した。
以上の結果から,SBP (Systolic Blood Pressure) とDBP (Distolic Blood Pressure) の精度が向上することが示唆された。
論文 参考訳(メタデータ) (2021-10-13T19:16:10Z) - A Deep Learning Approach to Predict Blood Pressure from PPG Signals [10.028103259763352]
血圧(BP)は、身体の生命維持機能を示す4つの主要な重要な兆候の1つである。
PPG信号に基づいてBPを推定するために,3層ディープニューラルネットワークを用いた高度なデータ駆動手法を提案する。
論文 参考訳(メタデータ) (2021-07-30T22:45:34Z) - PPG2ABP: Translating Photoplethysmogram (PPG) Signals to Arterial Blood
Pressure (ABP) Waveforms using Fully Convolutional Neural Networks [1.0045192779791103]
光胸腺X線信号を用いた非侵襲的アプローチにより連続動脈血圧(ABP)波形を予測する手法を開発した。
入力PSG信号から連続的なAPP波形を4.604 mmHgの絶対誤差で予測する深層学習法 PPG2ABP を提案する。
PPG2ABP のより驚くべき成功は、予測された ABP 波形からの DBP, MAP, SBP の計算値が、いくつかの測定値の下で既存の成果よりも優れていることが判明した。
論文 参考訳(メタデータ) (2020-05-04T17:22:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。