Deep Learning Interfacial Momentum Closures in Coarse-Mesh CFD Two-Phase
Flow Simulation Using Validation Data
- URL: http://arxiv.org/abs/2005.03767v1
- Date: Thu, 7 May 2020 21:25:22 GMT
- Title: Deep Learning Interfacial Momentum Closures in Coarse-Mesh CFD Two-Phase
Flow Simulation Using Validation Data
- Authors: Han Bao, Jinyong Feng, Nam Dinh, Hongbin Zhang
- Abstract summary: Feature-similarity measurement (FSM) is developed and applied to improve the simulation capability of two-phase flow with coarse-mesh CFD approach.
FSM can substantially improve the prediction of the coarse-mesh CFD model, regardless of the choice of interfacial closures.
- Score: 5.099083753474628
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multiphase flow phenomena have been widely observed in the industrial
applications, yet it remains a challenging unsolved problem. Three-dimensional
computational fluid dynamics (CFD) approaches resolve of the flow fields on
finer spatial and temporal scales, which can complement dedicated experimental
study. However, closures must be introduced to reflect the underlying physics
in multiphase flow. Among them, the interfacial forces, including drag, lift,
turbulent-dispersion and wall-lubrication forces, play an important role in
bubble distribution and migration in liquid-vapor two-phase flows. Development
of those closures traditionally rely on the experimental data and analytical
derivation with simplified assumptions that usually cannot deliver a universal
solution across a wide range of flow conditions. In this paper, a data-driven
approach, named as feature-similarity measurement (FSM), is developed and
applied to improve the simulation capability of two-phase flow with coarse-mesh
CFD approach. Interfacial momentum transfer in adiabatic bubbly flow serves as
the focus of the present study. Both a mature and a simplified set of
interfacial closures are taken as the low-fidelity data. Validation data
(including relevant experimental data and validated fine-mesh CFD simulations
results) are adopted as high-fidelity data. Qualitative and quantitative
analysis are performed in this paper. These reveal that FSM can substantially
improve the prediction of the coarse-mesh CFD model, regardless of the choice
of interfacial closures, and it provides scalability and consistency across
discontinuous flow regimes. It demonstrates that data-driven methods can aid
the multiphase flow modeling by exploring the connections between local
physical features and simulation errors.
Related papers
- Physically Interpretable Representation and Controlled Generation for Turbulence Data [39.42376941186934]
This paper proposes a data-driven approach to encode high-dimensional scientific data into low-dimensional, physically meaningful representations.
We validate our approach using 2D Navier-Stokes simulations of flow past a cylinder over a range of Reynolds numbers.
arXiv Detail & Related papers (2025-01-31T17:51:14Z) - FlowDAS: A Flow-Based Framework for Data Assimilation [15.64941169350615]
FlowDAS is a novel generative model-based framework using the interpolants to unify the learning of state transition dynamics and generative priors.
Our experiments demonstrate FlowDAS's superior performance on various benchmarks, from the Lorenz system to high-dimensional fluid superresolution tasks.
arXiv Detail & Related papers (2025-01-13T05:03:41Z) - Learning Pore-scale Multi-phase Flow from Experimental Data with Graph Neural Network [2.2101344151283944]
Current numerical models are often incapable of accurately capturing the complex pore-scale physics observed in experiments.
We propose a graph neural network-based approach and directly learn pore-scale fluid flow using micro-CT experimental data.
arXiv Detail & Related papers (2024-11-21T15:01:17Z) - Using Parametric PINNs for Predicting Internal and External Turbulent Flows [6.387263468033964]
We build upon the previously proposed RANS-PINN framework, which only focused on predicting flow over a cylinder.
We investigate its accuracy in predicting relevant turbulent flow variables for both internal and external flows.
arXiv Detail & Related papers (2024-10-24T17:08:20Z) - Coupling Machine Learning Local Predictions with a Computational Fluid Dynamics Solver to Accelerate Transient Buoyant Plume Simulations [0.0]
This study presents a versatile and scalable hybrid methodology, combining CFD and machine learning.
The objective was to leverage local features to predict the temporal changes in the pressure field in comparable scenarios.
Pressure estimates were employed as initial values to accelerate the pressure-velocity coupling procedure.
arXiv Detail & Related papers (2024-09-11T10:38:30Z) - PointSAGE: Mesh-independent superresolution approach to fluid flow predictions [0.0]
High-resolution CFD simulations offer valuable insights into fluid behavior and flow patterns.
As resolution increases, computational data requirements and time increase proportionately.
We propose PointSAGE, a mesh-independent network to learn the complex fluid flow and directly predict fine simulations.
arXiv Detail & Related papers (2024-04-06T12:49:09Z) - Inpainting Computational Fluid Dynamics with Deep Learning [8.397730500554047]
An effective fluid data completion method reduces the required number of sensors in a fluid dynamics experiment.
The ill-posed nature of the fluid data completion problem makes it prohibitively difficult to obtain a theoretical solution.
We employ the vector quantization technique to map both complete and incomplete fluid data spaces onto discrete-valued lower-dimensional representations.
arXiv Detail & Related papers (2024-02-27T03:44:55Z) - Diffusion Generative Flow Samplers: Improving learning signals through
partial trajectory optimization [87.21285093582446]
Diffusion Generative Flow Samplers (DGFS) is a sampling-based framework where the learning process can be tractably broken down into short partial trajectory segments.
Our method takes inspiration from the theory developed for generative flow networks (GFlowNets)
arXiv Detail & Related papers (2023-10-04T09:39:05Z) - Manifold Interpolating Optimal-Transport Flows for Trajectory Inference [64.94020639760026]
We present a method called Manifold Interpolating Optimal-Transport Flow (MIOFlow)
MIOFlow learns, continuous population dynamics from static snapshot samples taken at sporadic timepoints.
We evaluate our method on simulated data with bifurcations and merges, as well as scRNA-seq data from embryoid body differentiation, and acute myeloid leukemia treatment.
arXiv Detail & Related papers (2022-06-29T22:19:03Z) - Moser Flow: Divergence-based Generative Modeling on Manifolds [49.04974733536027]
Moser Flow (MF) is a new class of generative models within the family of continuous normalizing flows (CNF)
MF does not require invoking or backpropagating through an ODE solver during training.
We demonstrate for the first time the use of flow models for sampling from general curved surfaces.
arXiv Detail & Related papers (2021-08-18T09:00:24Z) - Influence Estimation and Maximization via Neural Mean-Field Dynamics [60.91291234832546]
We propose a novel learning framework using neural mean-field (NMF) dynamics for inference and estimation problems.
Our framework can simultaneously learn the structure of the diffusion network and the evolution of node infection probabilities.
arXiv Detail & Related papers (2021-06-03T00:02:05Z) - Combining Differentiable PDE Solvers and Graph Neural Networks for Fluid
Flow Prediction [79.81193813215872]
We develop a hybrid (graph) neural network that combines a traditional graph convolutional network with an embedded differentiable fluid dynamics simulator inside the network itself.
We show that we can both generalize well to new situations and benefit from the substantial speedup of neural network CFD predictions.
arXiv Detail & Related papers (2020-07-08T21:23:19Z) - Learning Likelihoods with Conditional Normalizing Flows [54.60456010771409]
Conditional normalizing flows (CNFs) are efficient in sampling and inference.
We present a study of CNFs where the base density to output space mapping is conditioned on an input x, to model conditional densities p(y|x)
arXiv Detail & Related papers (2019-11-29T19:17:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.