論文の概要: On the use of Data-Driven Cost Function Identification in Parametrized
NMPC
- arxiv url: http://arxiv.org/abs/2005.04076v1
- Date: Fri, 8 May 2020 14:53:35 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-05 13:19:50.825981
- Title: On the use of Data-Driven Cost Function Identification in Parametrized
NMPC
- Title(参考訳): 並列化NMPCにおけるデータ駆動コスト関数同定の利用について
- Authors: Mazen Alamir
- Abstract要約: 本稿では,コスト関数のデータ駆動モデルを用いた制約付きモデル予測制御(NMPC)設計のためのフレームワークを提案する。
本論文では,pythonモジュールを使用した完全な実装を提案し,GitHubリポジトリで無償公開されている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, a framework with complete numerical investigation is proposed
regarding the feasibility of constrained Nonlinear Model Predictive Control
(NMPC) design using Data-Driven model of the cost function. Although the idea
is very much in the air, this paper proposes a complete implementation using
python modules that are made freely available on a GitHub repository. Moreover,
a discussion regarding the different ways of deriving control via data-driven
modeling is proposed that can be of interest to practitioners.
- Abstract(参考訳): 本稿では, コスト関数のデータ駆動モデルを用いた制約付き非線形予測制御(NMPC)の設計の実現可能性について, 完全な数値解析による枠組みを提案する。
本論文では,pythonモジュールを使用した完全な実装を提案し,GitHubリポジトリで無償公開されている。
また,データ駆動モデリングによる制御の導出方法については,実践者にとって興味深い議論がなされている。
関連論文リスト
- Induced Model Matching: How Restricted Models Can Help Larger Ones [1.7676816383911753]
制限された特徴を用いた非常に正確な予測モデルが、より大きく、フル機能の、モデルのトレーニング時に利用可能であるシナリオを考察する。
制限されたモデルは、フルモデルにどのように役立つのか?
本稿では,制約モデルと制約モデルの性能を一致させることで,制約モデルの知識をフルモデルに伝達する手法を提案する。
論文 参考訳(メタデータ) (2024-02-19T20:21:09Z) - Data-driven Nonlinear Model Reduction using Koopman Theory: Integrated
Control Form and NMPC Case Study [56.283944756315066]
そこで本研究では,遅延座標符号化と全状態復号化を組み合わせた汎用モデル構造を提案し,Koopmanモデリングと状態推定を統合した。
ケーススタディでは,本手法が正確な制御モデルを提供し,高純度極低温蒸留塔のリアルタイム非線形予測制御を可能にすることを実証している。
論文 参考訳(メタデータ) (2024-01-09T11:54:54Z) - Value function estimation using conditional diffusion models for control [62.27184818047923]
拡散値関数(DVF)と呼ばれる単純なアルゴリズムを提案する。
拡散モデルを用いて環境-ロボット相互作用の連成多段階モデルを学ぶ。
本稿では,DVFを用いて複数のコントローラの状態を効率よく把握する方法を示す。
論文 参考訳(メタデータ) (2023-06-09T18:40:55Z) - A modular framework for stabilizing deep reinforcement learning control [3.3598755777055374]
本稿では,深層強化学習の最適化駆動とモデルフリーの利点と安定性の保証を組み合わせたフィードバックコントローラ設計のためのフレームワークを提案する。
近年の行動システムの発展により,データ駆動型内部モデルの構築が可能となった。
これにより、入力出力探索データに基づくYoula-Kuceraパラメータ化の代替実現が可能になる。
論文 参考訳(メタデータ) (2023-04-07T00:09:17Z) - LMI-based Data-Driven Robust Model Predictive Control [0.1473281171535445]
入力制約と状態制約を考慮したデータ駆動型ロバストな線形行列不等式モデル予測制御手法を提案する。
コントローラは閉ループシステムを安定化し、制約満足度を保証する。
論文 参考訳(メタデータ) (2023-03-08T18:20:06Z) - CARLA-GeAR: a Dataset Generator for a Systematic Evaluation of
Adversarial Robustness of Vision Models [61.68061613161187]
本稿では,合成データセットの自動生成ツールであるCARLA-GeARについて述べる。
このツールは、Python APIを使用して、CARLAシミュレータ上に構築されており、自律運転のコンテキストにおいて、いくつかのビジョンタスク用のデータセットを生成することができる。
本稿では,CARLA-GeARで生成されたデータセットが,現実世界の敵防衛のベンチマークとして今後どのように利用されるかを示す。
論文 参考訳(メタデータ) (2022-06-09T09:17:38Z) - Learning Summary Statistics for Bayesian Inference with Autoencoders [58.720142291102135]
我々は,ディープニューラルネットワークに基づくオートエンコーダの内部次元を要約統計として利用する。
パラメータ関連情報を全て符号化するエンコーダのインセンティブを作成するため,トレーニングデータの生成に使用した暗黙的情報にデコーダがアクセスできるようにする。
論文 参考訳(メタデータ) (2022-01-28T12:00:31Z) - Evaluating model-based planning and planner amortization for continuous
control [79.49319308600228]
我々は、モデル予測制御(MPC)と学習モデルとモデルフリーポリシー学習を組み合わせたハイブリッドアプローチを採っている。
モデルフリーエージェントは高いDoF制御問題においても強いベースラインであることがわかった。
モデルに基づくプランナを,パフォーマンスを損なうことなく,計画が損なわれるようなポリシーに置き換えることが可能であることを示す。
論文 参考訳(メタデータ) (2021-10-07T12:00:40Z) - Adaptive Optimal Trajectory Tracking Control Applied to a Large-Scale
Ball-on-Plate System [0.0]
ADPを用いた大規模ボール・オン・プレートシステムのための最適軌道追従制御器を提案する。
提案手法では,セットポイントトラッキングの代わりに参照軌道を近似し,一定のオフセット項を自動的に補償することができる。
実験の結果, このトラッキング機構は, セットポイントコントローラに比べて制御コストを大幅に削減することがわかった。
論文 参考訳(メタデータ) (2020-10-26T11:22:03Z) - Nonparametric Estimation in the Dynamic Bradley-Terry Model [69.70604365861121]
カーネルのスムース化に依存する新しい推定器を開発し、時間とともにペア比較を前処理する。
モデルに依存しない設定における推定誤差と余剰リスクの両方について時間変化のオラクル境界を導出する。
論文 参考訳(メタデータ) (2020-02-28T21:52:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。