An Inductive Transfer Learning Approach using Cycle-consistent
Adversarial Domain Adaptation with Application to Brain Tumor Segmentation
- URL: http://arxiv.org/abs/2005.04906v1
- Date: Mon, 11 May 2020 08:01:59 GMT
- Title: An Inductive Transfer Learning Approach using Cycle-consistent
Adversarial Domain Adaptation with Application to Brain Tumor Segmentation
- Authors: Yuta Tokuoka, Shuji Suzuki, Yohei Sugawara
- Abstract summary: In this work, we provide an inductive transfer learning (ITL) approach to adopt the annotation label of the source domain datasets to tasks of the target domain datasets using Cycle-GAN based unsupervised domain adaptation (UDA)
The results confirm that the segmentation accuracy of brain tumor segmentation improved significantly.
- Score: 1.9981375888949477
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With recent advances in supervised machine learning for medical image
analysis applications, the annotated medical image datasets of various domains
are being shared extensively. Given that the annotation labelling requires
medical expertise, such labels should be applied to as many learning tasks as
possible. However, the multi-modal nature of each annotated image renders it
difficult to share the annotation label among diverse tasks. In this work, we
provide an inductive transfer learning (ITL) approach to adopt the annotation
label of the source domain datasets to tasks of the target domain datasets
using Cycle-GAN based unsupervised domain adaptation (UDA). To evaluate the
applicability of the ITL approach, we adopted the brain tissue annotation label
on the source domain dataset of Magnetic Resonance Imaging (MRI) images to the
task of brain tumor segmentation on the target domain dataset of MRI. The
results confirm that the segmentation accuracy of brain tumor segmentation
improved significantly. The proposed ITL approach can make significant
contribution to the field of medical image analysis, as we develop a
fundamental tool to improve and promote various tasks using medical images.
Related papers
- Eye-gaze Guided Multi-modal Alignment for Medical Representation Learning [65.54680361074882]
Eye-gaze Guided Multi-modal Alignment (EGMA) framework harnesses eye-gaze data for better alignment of medical visual and textual features.
We conduct downstream tasks of image classification and image-text retrieval on four medical datasets.
arXiv Detail & Related papers (2024-03-19T03:59:14Z) - Unsupervised Federated Domain Adaptation for Segmentation of MRI Images [20.206972068340843]
We develop a method for unsupervised federated domain adaptation using multiple annotated source domains.
Our approach enables the transfer of knowledge from several annotated source domains to adapt a model for effective use in an unannotated target domain.
arXiv Detail & Related papers (2024-01-02T00:31:41Z) - fMRI-PTE: A Large-scale fMRI Pretrained Transformer Encoder for
Multi-Subject Brain Activity Decoding [54.17776744076334]
We propose fMRI-PTE, an innovative auto-encoder approach for fMRI pre-training.
Our approach involves transforming fMRI signals into unified 2D representations, ensuring consistency in dimensions and preserving brain activity patterns.
Our contributions encompass introducing fMRI-PTE, innovative data transformation, efficient training, a novel learning strategy, and the universal applicability of our approach.
arXiv Detail & Related papers (2023-11-01T07:24:22Z) - Modality-Agnostic Learning for Medical Image Segmentation Using
Multi-modality Self-distillation [1.815047691981538]
We propose a novel framework, Modality-Agnostic learning through Multi-modality Self-dist-illation (MAG-MS)
MAG-MS distills knowledge from the fusion of multiple modalities and applies it to enhance representation learning for individual modalities.
Our experiments on benchmark datasets demonstrate the high efficiency of MAG-MS and its superior segmentation performance.
arXiv Detail & Related papers (2023-06-06T14:48:50Z) - Cross-Modality Brain Tumor Segmentation via Bidirectional
Global-to-Local Unsupervised Domain Adaptation [61.01704175938995]
In this paper, we propose a novel Bidirectional Global-to-Local (BiGL) adaptation framework under a UDA scheme.
Specifically, a bidirectional image synthesis and segmentation module is proposed to segment the brain tumor.
The proposed method outperforms several state-of-the-art unsupervised domain adaptation methods by a large margin.
arXiv Detail & Related papers (2021-05-17T10:11:45Z) - Self-Attentive Spatial Adaptive Normalization for Cross-Modality Domain
Adaptation [9.659642285903418]
Cross-modality synthesis of medical images to reduce the costly annotation burden by radiologists.
We present a novel approach for image-to-image translation in medical images, capable of supervised or unsupervised (unpaired image data) setups.
arXiv Detail & Related papers (2021-03-05T16:22:31Z) - Few-shot Medical Image Segmentation using a Global Correlation Network
with Discriminative Embedding [60.89561661441736]
We propose a novel method for few-shot medical image segmentation.
We construct our few-shot image segmentor using a deep convolutional network trained episodically.
We enhance discriminability of deep embedding to encourage clustering of the feature domains of the same class.
arXiv Detail & Related papers (2020-12-10T04:01:07Z) - Medical Image Harmonization Using Deep Learning Based Canonical Mapping:
Toward Robust and Generalizable Learning in Imaging [4.396671464565882]
We propose a new paradigm in which data from a diverse range of acquisition conditions are "harmonized" to a common reference domain.
We test this approach on two example problems, namely MRI-based brain age prediction and classification of schizophrenia.
arXiv Detail & Related papers (2020-10-11T22:01:37Z) - Collaborative Unsupervised Domain Adaptation for Medical Image Diagnosis [102.40869566439514]
We seek to exploit rich labeled data from relevant domains to help the learning in the target task via Unsupervised Domain Adaptation (UDA)
Unlike most UDA methods that rely on clean labeled data or assume samples are equally transferable, we innovatively propose a Collaborative Unsupervised Domain Adaptation algorithm.
We theoretically analyze the generalization performance of the proposed method, and also empirically evaluate it on both medical and general images.
arXiv Detail & Related papers (2020-07-05T11:49:17Z) - Unsupervised Bidirectional Cross-Modality Adaptation via Deeply
Synergistic Image and Feature Alignment for Medical Image Segmentation [73.84166499988443]
We present a novel unsupervised domain adaptation framework, named as Synergistic Image and Feature Alignment (SIFA)
Our proposed SIFA conducts synergistic alignment of domains from both image and feature perspectives.
Experimental results on two different tasks demonstrate that our SIFA method is effective in improving segmentation performance on unlabeled target images.
arXiv Detail & Related papers (2020-02-06T13:49:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.