論文の概要: Ring Reservoir Neural Networks for Graphs
- arxiv url: http://arxiv.org/abs/2005.05294v1
- Date: Mon, 11 May 2020 17:51:40 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-04 19:17:50.098361
- Title: Ring Reservoir Neural Networks for Graphs
- Title(参考訳): グラフのためのリングリザーバニューラルネットワーク
- Authors: Claudio Gallicchio and Alessio Micheli
- Abstract要約: 貯留層コンピューティングモデルは、実りあるグラフの埋め込みを開発する上で重要な役割を果たす。
我々の中心となる提案は、リングトポロジーに従うために隠れたニューロンの組織を形成することに基づいている。
グラフ分類タスクの実験結果は、リング・リザーバアーキテクチャが特に効果的なネットワーク構成を可能にしていることを示している。
- 参考スコア(独自算出の注目度): 15.07984894938396
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Machine Learning for graphs is nowadays a research topic of consolidated
relevance. Common approaches in the field typically resort to complex deep
neural network architectures and demanding training algorithms, highlighting
the need for more efficient solutions. The class of Reservoir Computing (RC)
models can play an important role in this context, enabling to develop fruitful
graph embeddings through untrained recursive architectures. In this paper, we
study progressive simplifications to the design strategy of RC neural networks
for graphs. Our core proposal is based on shaping the organization of the
hidden neurons to follow a ring topology. Experimental results on graph
classification tasks indicate that ring-reservoirs architectures enable
particularly effective network configurations, showing consistent advantages in
terms of predictive performance.
- Abstract(参考訳): グラフのための機械学習は、今日では統合関連の研究テーマとなっている。
この分野の一般的なアプローチは、複雑なディープニューラルネットワークアーキテクチャと、より効率的なソリューションの必要性を強調するトレーニングアルゴリズムを必要とする。
この文脈において、リザーバコンピューティング(rc)モデルのクラスは重要な役割を果たすことができ、訓練されていない再帰的アーキテクチャを通して実りあるグラフ埋め込みを開発することができる。
本稿では,グラフに対するRCニューラルネットワークの設計戦略の進歩的単純化について検討する。
我々の中心となる提案は、リングトポロジーに従うために隠れたニューロンの組織を形成することに基づいている。
グラフ分類タスクの実験結果から、リング・リザーバアーキテクチャは特に効果的なネットワーク構成を可能にし、予測性能の面で一貫した優位性を示す。
関連論文リスト
- Enhancing Graph Representation Learning with Attention-Driven Spiking Neural Networks [5.627287101959473]
グラフ学習タスクのための従来のニューラルネットワークに代わる有望な代替手段として、スパイキングニューラルネットワーク(SNN)が登場している。
グラフ表現学習を改善するために,注意機構をSNNと統合した新しい手法を提案する。
論文 参考訳(メタデータ) (2024-03-25T12:15:10Z) - Spiking Graph Convolutional Networks [19.36064180392385]
SpikingGCNは、GCNの埋め込みとSNNの生体忠実性特性を統合することを目的としたエンドツーエンドフレームワークである。
ニューロモルフィックチップ上でのスパイキングGCNは、グラフデータ解析にエネルギー効率の明確な利点をもたらすことを示す。
論文 参考訳(メタデータ) (2022-05-05T16:44:36Z) - Inducing Gaussian Process Networks [80.40892394020797]
本稿では,特徴空間と誘導点を同時に学習するシンプルなフレームワークであるGaussian Process Network (IGN)を提案する。
特に誘導点は特徴空間で直接学習され、複雑な構造化領域のシームレスな表現を可能にする。
実世界のデータセットに対する実験結果から,IGNは最先端の手法よりも大幅に進歩していることを示す。
論文 参考訳(メタデータ) (2022-04-21T05:27:09Z) - Representation Learning of Reconstructed Graphs Using Random Walk Graph
Convolutional Network [12.008472517000651]
グラフのノード特異的なメソスコピック構造を得るためにランダムウォークを利用する新しいフレームワークであるwGCNを提案する。
高次局所構造情報を組み合わせることで、ネットワークの可能性をより効率的に探究できると信じている。
論文 参考訳(メタデータ) (2021-01-02T10:31:14Z) - Analyzing the Performance of Graph Neural Networks with Pipe Parallelism [2.269587850533721]
ノードやエッジの分類やリンクの予測といったタスクで大きな成功を収めたグラフニューラルネットワーク(GNN)に注目した。
グラフ技術の進歩には,大規模ネットワーク処理のための新たなアプローチが必要である。
私たちは、ディープラーニングコミュニティで成功したと知られている既存のツールとフレームワークを使用して、GNNを並列化する方法を研究します。
論文 参考訳(メタデータ) (2020-12-20T04:20:38Z) - Learning Connectivity of Neural Networks from a Topological Perspective [80.35103711638548]
本稿では,ネットワークを解析のための完全なグラフに表現するためのトポロジ的視点を提案する。
接続の規模を反映したエッジに学習可能なパラメータを割り当てることにより、学習プロセスを異なる方法で行うことができる。
この学習プロセスは既存のネットワークと互換性があり、より大きな検索空間と異なるタスクへの適応性を持っている。
論文 参考訳(メタデータ) (2020-08-19T04:53:31Z) - Towards Deeper Graph Neural Networks [63.46470695525957]
グラフ畳み込みは近傍の集約を行い、最も重要なグラフ操作の1つである。
いくつかの最近の研究で、この性能劣化は過度に滑らかな問題に起因している。
本研究では,大きな受容領域からの情報を適応的に組み込むディープ適応グラフニューラルネットワーク(DAGNN)を提案する。
論文 参考訳(メタデータ) (2020-07-18T01:11:14Z) - GCC: Graph Contrastive Coding for Graph Neural Network Pre-Training [62.73470368851127]
グラフ表現学習は現実世界の問題に対処する強力な手法として登場した。
自己教師付きグラフニューラルネットワーク事前トレーニングフレームワークであるGraph Contrastive Codingを設計する。
3つのグラフ学習タスクと10のグラフデータセットについて実験を行った。
論文 参考訳(メタデータ) (2020-06-17T16:18:35Z) - Geometrically Principled Connections in Graph Neural Networks [66.51286736506658]
我々は、幾何学的深層学習の新興分野におけるイノベーションの原動力は、幾何が依然として主要な推進力であるべきだと論じている。
グラフニューラルネットワークとコンピュータグラフィックスとデータ近似モデルとの関係:放射基底関数(RBF)
完全連結層とグラフ畳み込み演算子を組み合わせた新しいビルディングブロックであるアフィンスキップ接続を導入する。
論文 参考訳(メタデータ) (2020-04-06T13:25:46Z) - Progressive Graph Convolutional Networks for Semi-Supervised Node
Classification [97.14064057840089]
グラフ畳み込みネットワークは、半教師付きノード分類のようなグラフベースのタスクに対処することに成功した。
本稿では,コンパクトかつタスク固有のグラフ畳み込みネットワークを自動構築する手法を提案する。
論文 参考訳(メタデータ) (2020-03-27T08:32:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。