The Unstoppable Rise of Computational Linguistics in Deep Learning
- URL: http://arxiv.org/abs/2005.06420v3
- Date: Thu, 11 Jun 2020 07:58:28 GMT
- Title: The Unstoppable Rise of Computational Linguistics in Deep Learning
- Authors: James Henderson
- Abstract summary: We trace the history of neural networks applied to natural language understanding tasks.
We argue that Transformer is not a sequence model but an induced-structure model.
- Score: 17.572024590374305
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we trace the history of neural networks applied to natural
language understanding tasks, and identify key contributions which the nature
of language has made to the development of neural network architectures. We
focus on the importance of variable binding and its instantiation in
attention-based models, and argue that Transformer is not a sequence model but
an induced-structure model. This perspective leads to predictions of the
challenges facing research in deep learning architectures for natural language
understanding.
Related papers
- Deep Learning Through A Telescoping Lens: A Simple Model Provides Empirical Insights On Grokking, Gradient Boosting & Beyond [61.18736646013446]
In pursuit of a deeper understanding of its surprising behaviors, we investigate the utility of a simple yet accurate model of a trained neural network.
Across three case studies, we illustrate how it can be applied to derive new empirical insights on a diverse range of prominent phenomena.
arXiv Detail & Related papers (2024-10-31T22:54:34Z) - A Percolation Model of Emergence: Analyzing Transformers Trained on a Formal Language [15.929767234646631]
Increase in data, size, or compute can lead to sudden learning of specific capabilities by a neural network.
"emergence" is a phenomenon often called "emergence"
arXiv Detail & Related papers (2024-08-22T17:44:22Z) - Hidden Holes: topological aspects of language models [1.1172147007388977]
We study the evolution of topological structure in GPT based large language models across depth and time during training.
We show that the latter exhibit more topological complexity, with a distinct pattern of changes common to all natural languages but absent from synthetically generated data.
arXiv Detail & Related papers (2024-06-09T14:25:09Z) - Language Evolution with Deep Learning [49.879239655532324]
Computational modeling plays an essential role in the study of language emergence.
It aims to simulate the conditions and learning processes that could trigger the emergence of a structured language.
This chapter explores another class of computational models that have recently revolutionized the field of machine learning: deep learning models.
arXiv Detail & Related papers (2024-03-18T16:52:54Z) - SINC: Self-Supervised In-Context Learning for Vision-Language Tasks [64.44336003123102]
We propose a framework to enable in-context learning in large language models.
A meta-model can learn on self-supervised prompts consisting of tailored demonstrations.
Experiments show that SINC outperforms gradient-based methods in various vision-language tasks.
arXiv Detail & Related papers (2023-07-15T08:33:08Z) - Deep Learning Models to Study Sentence Comprehension in the Human Brain [0.1503974529275767]
Recent artificial neural networks that process natural language achieve unprecedented performance in tasks requiring sentence-level understanding.
We review works that compare these artificial language models with human brain activity and we assess the extent to which this approach has improved our understanding of the neural processes involved in natural language comprehension.
arXiv Detail & Related papers (2023-01-16T10:31:25Z) - The Neural Race Reduction: Dynamics of Abstraction in Gated Networks [12.130628846129973]
We introduce the Gated Deep Linear Network framework that schematizes how pathways of information flow impact learning dynamics.
We derive an exact reduction and, for certain cases, exact solutions to the dynamics of learning.
Our work gives rise to general hypotheses relating neural architecture to learning and provides a mathematical approach towards understanding the design of more complex architectures.
arXiv Detail & Related papers (2022-07-21T12:01:03Z) - Data-driven emergence of convolutional structure in neural networks [83.4920717252233]
We show how fully-connected neural networks solving a discrimination task can learn a convolutional structure directly from their inputs.
By carefully designing data models, we show that the emergence of this pattern is triggered by the non-Gaussian, higher-order local structure of the inputs.
arXiv Detail & Related papers (2022-02-01T17:11:13Z) - A neural anisotropic view of underspecification in deep learning [60.119023683371736]
We show that the way neural networks handle the underspecification of problems is highly dependent on the data representation.
Our results highlight that understanding the architectural inductive bias in deep learning is fundamental to address the fairness, robustness, and generalization of these systems.
arXiv Detail & Related papers (2021-04-29T14:31:09Z) - Learning Connectivity of Neural Networks from a Topological Perspective [80.35103711638548]
We propose a topological perspective to represent a network into a complete graph for analysis.
By assigning learnable parameters to the edges which reflect the magnitude of connections, the learning process can be performed in a differentiable manner.
This learning process is compatible with existing networks and owns adaptability to larger search spaces and different tasks.
arXiv Detail & Related papers (2020-08-19T04:53:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.