論文の概要: Foundations and modelling of dynamic networks using Dynamic Graph Neural
Networks: A survey
- arxiv url: http://arxiv.org/abs/2005.07496v2
- Date: Sun, 13 Jun 2021 07:05:05 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-03 13:00:50.430201
- Title: Foundations and modelling of dynamic networks using Dynamic Graph Neural
Networks: A survey
- Title(参考訳): 動的グラフニューラルネットワークを用いた動的ネットワークの基礎とモデリング
- Authors: Joakim Skarding, Bogdan Gabrys and Katarzyna Musial
- Abstract要約: 我々は、一貫した詳細な用語と表記を伴う動的ネットワークの基礎を確立する。
提案する用語を用いて,動的グラフニューラルネットワークモデルに関する包括的調査を行う。
- 参考スコア(独自算出の注目度): 11.18312489268624
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Dynamic networks are used in a wide range of fields, including social network
analysis, recommender systems, and epidemiology. Representing complex networks
as structures changing over time allow network models to leverage not only
structural but also temporal patterns. However, as dynamic network literature
stems from diverse fields and makes use of inconsistent terminology, it is
challenging to navigate. Meanwhile, graph neural networks (GNNs) have gained a
lot of attention in recent years for their ability to perform well on a range
of network science tasks, such as link prediction and node classification.
Despite the popularity of graph neural networks and the proven benefits of
dynamic network models, there has been little focus on graph neural networks
for dynamic networks. To address the challenges resulting from the fact that
this research crosses diverse fields as well as to survey dynamic graph neural
networks, this work is split into two main parts. First, to address the
ambiguity of the dynamic network terminology we establish a foundation of
dynamic networks with consistent, detailed terminology and notation. Second, we
present a comprehensive survey of dynamic graph neural network models using the
proposed terminology
- Abstract(参考訳): 動的ネットワークは、ソーシャル・ネットワーク分析、レコメンダ・システム、疫学など幅広い分野で利用されている。
複雑なネットワークを時間とともに変化する構造として表現することで、ネットワークモデルは構造だけでなく時間的パターンも活用できる。
しかし,動的ネットワーク文学は多様な分野を起源とし,一貫性のない用語を用いるため,ナビゲートが困難である。
一方、グラフニューラルネットワーク(GNN)は、リンク予測やノード分類など、さまざまなネットワーク科学タスクでうまく機能する能力によって、近年多くの注目を集めている。
グラフニューラルネットワークの人気と、動的ネットワークモデルの実証されたメリットにもかかわらず、動的ネットワークのためのグラフニューラルネットワークはほとんど注目されていない。
この研究が様々な分野を横断し、動的グラフニューラルネットワークを探索することによる課題に対処するため、この研究は2つの主要な部分に分けられる。
まず、動的ネットワーク用語のあいまいさに対処するため、一貫した詳細な用語と表記を伴う動的ネットワークの基礎を確立する。
次に,提案する用語を用いた動的グラフニューラルネットワークモデルの包括的調査を行う。
関連論文リスト
- Graph Neural Networks for Learning Equivariant Representations of Neural Networks [55.04145324152541]
本稿では,ニューラルネットワークをパラメータの計算グラフとして表現することを提案する。
我々のアプローチは、ニューラルネットワークグラフを多種多様なアーキテクチャでエンコードする単一モデルを可能にする。
本稿では,暗黙的ニューラル表現の分類や編集など,幅広いタスクにおける本手法の有効性を示す。
論文 参考訳(メタデータ) (2024-03-18T18:01:01Z) - Image segmentation with traveling waves in an exactly solvable recurrent
neural network [71.74150501418039]
繰り返しニューラルネットワークは、シーンの構造特性に応じて、画像をグループに効果的に分割できることを示す。
本稿では,このネットワークにおけるオブジェクトセグメンテーションのメカニズムを正確に記述する。
次に、グレースケール画像中の単純な幾何学的対象から自然画像まで、入力をまたいで一般化するオブジェクトセグメンテーションの簡単なアルゴリズムを実証する。
論文 参考訳(メタデータ) (2023-11-28T16:46:44Z) - How neural networks learn to classify chaotic time series [77.34726150561087]
本研究では,通常の逆カオス時系列を分類するために訓練されたニューラルネットワークの内部動作について検討する。
入力周期性とアクティベーション周期の関係は,LKCNNモデルの性能向上の鍵となる。
論文 参考訳(メタデータ) (2023-06-04T08:53:27Z) - On the effectiveness of neural priors in modeling dynamical systems [28.69155113611877]
ニューラルネットワークがそのようなシステムを学ぶ際に提供するアーキテクチャの規則化について論じる。
動的システムをモデル化する際の複数の問題を解決するために,レイヤ数が少ない単純な座標ネットワークが利用できることを示す。
論文 参考訳(メタデータ) (2023-03-10T06:21:24Z) - Deep Neural Networks as Complex Networks [1.704936863091649]
我々は、重み付きグラフとしてディープニューラルネットワーク(DNN)を表現するために複雑ネットワーク理論を用いる。
我々は、DNNを動的システムとして研究するためのメトリクスを導入し、その粒度は、重みから神経細胞を含む層まで様々である。
我々の測定値が低性能ネットワークと高パフォーマンスネットワークを区別していることが示される。
論文 参考訳(メタデータ) (2022-09-12T16:26:04Z) - Characterizing Learning Dynamics of Deep Neural Networks via Complex
Networks [1.0869257688521987]
複素ネットワーク理論(CNT)は、ディープニューラルネットワーク(DNN)を重み付きグラフとして表現し、それらを動的システムとして研究する。
ノード/ニューロンとレイヤ、すなわちNodes StrengthとLayers Fluctuationのメトリクスを紹介します。
本フレームワークは,学習力学のトレンドを抽出し,高精度ネットワークから低次ネットワークを分離する。
論文 参考訳(メタデータ) (2021-10-06T10:03:32Z) - Dynamic Network Embedding Survey [11.742863376032112]
本稿では,動的ネットワークの埋め込みに関する調査を行う。
動的ネットワークのための2つの基本データモデル、すなわち離散モデルと連続モデルを提案する。
典型的な学習モデルによって分類階層を洗練させる分類法を構築する。
論文 参考訳(メタデータ) (2021-03-29T09:27:53Z) - Learning Contact Dynamics using Physically Structured Neural Networks [81.73947303886753]
ディープニューラルネットワークと微分方程式の接続を用いて、オブジェクト間の接触ダイナミクスを表現するディープネットワークアーキテクチャのファミリを設計する。
これらのネットワークは,ノイズ観測から不連続な接触事象をデータ効率良く学習できることを示す。
以上の結果から,タッチフィードバックの理想化形態は,この学習課題を扱いやすくするための重要な要素であることが示唆された。
論文 参考訳(メタデータ) (2021-02-22T17:33:51Z) - Graph Structure of Neural Networks [104.33754950606298]
ニューラルネットワークのグラフ構造が予測性能にどのように影響するかを示す。
リレーショナルグラフの"スイートスポット"は、予測性能を大幅に改善したニューラルネットワークにつながる。
トップパフォーマンスニューラルネットワークは、実際の生物学的ニューラルネットワークと驚くほどよく似たグラフ構造を持つ。
論文 参考訳(メタデータ) (2020-07-13T17:59:31Z) - Modeling Dynamic Heterogeneous Network for Link Prediction using
Hierarchical Attention with Temporal RNN [16.362525151483084]
我々はDyHATRと呼ばれる新しい動的ヘテロジニアスネットワーク埋め込み法を提案する。
階層的な注意を使って異質な情報を学習し、進化パターンを捉えるために時間的注意を伴う繰り返しニューラルネットワークを組み込む。
リンク予測のための4つの実世界のデータセットに対して,本手法をベンチマークした。
論文 参考訳(メタデータ) (2020-04-01T17:16:47Z) - Analyzing Neural Networks Based on Random Graphs [77.34726150561087]
様々なタイプのランダムグラフに対応するアーキテクチャを用いて,ニューラルネットワークの大規模評価を行う。
古典的な数値グラフ不変量は、それ自体が最良のネットワークを選び出すことができない。
また、主に短距離接続を持つネットワークは、多くの長距離接続が可能なネットワークよりも性能が良いことも見出した。
論文 参考訳(メタデータ) (2020-02-19T11:04:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。