The electron microscope as a quantum gate
- URL: http://arxiv.org/abs/2005.07936v1
- Date: Sat, 16 May 2020 10:19:08 GMT
- Title: The electron microscope as a quantum gate
- Authors: Peter Schattschneider and Stefan L\"offler
- Abstract summary: We propose to use the topological charge instead of the spin variable to span a two-dimensional Hilbert space for beam electrons in a transmission electron microscope (TEM)
We show how a combination of magnetic quadrupoles with a magnetic drift tube can serve as a universal device to manipulate such qbits at the experimenter's discretion.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose to use the topological charge instead of the spin variable to span
a two-dimensional Hilbert space for beam electrons in a transmission electron
microscope (TEM). In this basis, an electron can be considered as a qbit freely
floating in vacuum. We show how a combination of magnetic quadrupoles with a
magnetic drift tube can serve as a universal device to manipulate such qbits at
the experimenter's discretion. High-end TEMs with aberration correctors, high
beam coherence and utmost stability are a promising platform for such
experiments, allowing the construction of quantum logic gates for single beam
electrons in a microscope.
Related papers
- A quantum logic gate for free electrons [0.0]
A beam electron in a transmission electron microscope can be considered as a quantum bit (qubit) freely propagating in the column.
We set up a TEM probe forming lens system as a quantum gate and demonstrate its action numerically and experimentally.
High-end TEMs with aberration correctors are a promising platform for such experiments, opening the way to study quantum logic gates in the electron microscope.
arXiv Detail & Related papers (2022-09-15T08:11:02Z) - Electron quantum optics with beam splitters and waveguides in Dirac
Matter [0.0]
splitting of the electron wavefunction is explored for systems supporting Dirac type physics.
Electron beam-splitters and superfocusers are analysed along with propagation through nanoribbons.
arXiv Detail & Related papers (2022-04-18T13:24:06Z) - Quantum-coherent light-electron interaction in an SEM [0.0]
We show the quantum coherent coupling between electrons and light in a scanning electron microscope.
Scanning electron microscopes afford the yet-unexplored electron energies from 0.5 to 30 keV.
Our results will allow imaging with low-energy electrons and attosecond time resolution.
arXiv Detail & Related papers (2021-10-02T09:14:14Z) - A low-loss ferrite circulator as a tunable chiral quantum system [108.66477491099887]
We demonstrate a low-loss waveguide circulator constructed with single-crystalline yttrium iron garnet (YIG) in a 3D cavity.
We show the coherent coupling of its chiral internal modes with integrated superconducting niobium cavities.
We also probe experimentally the effective non-Hermitian dynamics of this system and its effective non-reciprocal eigenmodes.
arXiv Detail & Related papers (2021-06-21T17:34:02Z) - Integrated photonics enables continuous-beam electron phase modulation [0.0]
Integrated photonics can efficiently interface free electrons and light.
We demonstrate coherent phase modulation of an electron beam using a silicon nitride microresonator driven by a continuous-wave laser.
Our results highlight the potential of integrated photonics to efficiently interface free electrons and light.
arXiv Detail & Related papers (2021-05-08T16:17:01Z) - Magnetic and geometric effects on the electronic transport of metallic
nanotubes [122.46389612035273]
We present a numerical study of the electronic transport properties of metallic nanotubes deviating from the cylindrical form.
It is found that the nanotube may be used as an energy high-pass filter for electrons.
It is also shown that the device can be used to tune the angular momentum of transmitted electrons.
arXiv Detail & Related papers (2021-01-11T16:58:42Z) - Towards atomic-resolution quantum measurements with coherently-shaped
free electrons [0.0]
We propose a technique that leverages free electrons that are coherently-shaped by laser pulses to measure quantum coherence in materials.
We show how the energy spectrum of laser-shaped electrons enables measuring the qubit Block-sphere state and decoherence time.
Our scheme could be implemented in an ultrafast transmission electron microscope (UTEM), opening the way towards the full characterization of the state of quantum systems.
arXiv Detail & Related papers (2020-10-31T19:54:06Z) - Gravity Probe Spin: Prospects for measuring general-relativistic
precession of intrinsic spin using a ferromagnetic gyroscope [51.51258642763384]
An experimental test at the intersection of quantum physics and general relativity is proposed.
The behavior of intrinsic spin in spacetime is an experimentally open question.
A measurement is possible by using mm-scale ferromagnetic gyroscopes in orbit around the Earth.
arXiv Detail & Related papers (2020-06-16T17:18:44Z) - Conditional quantum operation of two exchange-coupled single-donor spin
qubits in a MOS-compatible silicon device [48.7576911714538]
Silicon nanoelectronic devices can host single-qubit quantum logic operations with fidelity better than 99.9%.
For the spins of an electron bound to a single donor atom, introduced in the silicon by ion implantation, the quantum information can be stored for nearly 1 second.
Here we demonstrate the conditional, coherent control of an electron spin qubit in an exchange-coupled pair of $31$P donors implanted in silicon.
arXiv Detail & Related papers (2020-06-08T11:25:16Z) - General quantum-mechanical solution for twisted electrons in a uniform
magnetic field [68.8204255655161]
A theory of twisted (and other structured) paraxial electrons in a uniform magnetic field is developed.
The observable effect of a different behavior of relativistic Laguerre-Gauss beams with opposite directions of the orbital angular momentum penetrating from the free space into a magnetic field is predicted.
arXiv Detail & Related papers (2020-05-13T16:35:10Z) - Entanglement generation via power-of-SWAP operations between dynamic
electron-spin qubits [62.997667081978825]
Surface acoustic waves (SAWs) can create moving quantum dots in piezoelectric materials.
We show how electron-spin qubits located on dynamic quantum dots can be entangled.
arXiv Detail & Related papers (2020-01-15T19:00:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.