論文の概要: Causal Modeling of Twitter Activity During COVID-19
- arxiv url: http://arxiv.org/abs/2005.07952v3
- Date: Wed, 23 Sep 2020 20:05:12 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-02 14:00:08.953770
- Title: Causal Modeling of Twitter Activity During COVID-19
- Title(参考訳): 新型コロナウイルスによるTwitter活動の因果モデリング
- Authors: Oguzhan Gencoglu and Mathias Gruber
- Abstract要約: 本研究では,パンデミックの特徴とTwitter活動の因果関係を発見し,定量化する因果推論手法を提案する。
以上の結果から,提案手法は疫学領域の知識を捉えるのに有効であることが示唆された。
本研究は,公衆の注意を喚起する出来事と公衆の注意を喚起する出来事を区別することにより,情報疫学の分野に寄与すると考えている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Understanding the characteristics of public attention and sentiment is an
essential prerequisite for appropriate crisis management during adverse health
events. This is even more crucial during a pandemic such as COVID-19, as
primary responsibility of risk management is not centralized to a single
institution, but distributed across society. While numerous studies utilize
Twitter data in descriptive or predictive context during COVID-19 pandemic,
causal modeling of public attention has not been investigated. In this study,
we propose a causal inference approach to discover and quantify causal
relationships between pandemic characteristics (e.g. number of infections and
deaths) and Twitter activity as well as public sentiment. Our results show that
the proposed method can successfully capture the epidemiological domain
knowledge and identify variables that affect public attention and sentiment. We
believe our work contributes to the field of infodemiology by distinguishing
events that correlate with public attention from events that cause public
attention.
- Abstract(参考訳): 公衆の注意と感情の特徴を理解することは、有害な健康イベントにおける適切な危機管理の必須条件である。
これはcovid-19のようなパンデミックにおいてさらに重要であり、リスク管理の第一責任は単一の機関に集中するのではなく、社会全体に分散している。
新型コロナウイルスのパンデミックの間、Twitterのデータを記述的あるいは予測的文脈で活用する研究は多いが、公衆の注意の因果モデリングは研究されていない。
本研究では,パンデミックの特徴(感染数や死亡数など)とtwitterの行動と公衆の感情との関係を発見・定量化するための因果推論手法を提案する。
提案手法は,疫学領域の知識を抽出し,公衆の注意や感情に影響を及ぼす変数を同定する。
我々の研究は、公衆の注意と関連する出来事と、公衆の注意を惹起する出来事とを区別することで、情報学の分野に寄与すると信じています。
関連論文リスト
- Event Detection from Social Media for Epidemic Prediction [76.90779562626541]
ソーシャルメディア投稿から疫病関連事象を抽出・分析する枠組みを構築した。
実験では、新型コロナウイルスベースのSPEEDで訓練されたEDモデルが、3つの目に見えない流行の流行を効果的に検出する方法が明らかにされている。
モンキーポックスのWHO流行宣言より4~9週間早く,抽出した事象の報告が急激な増加を示すことを示す。
論文 参考訳(メタデータ) (2024-04-02T06:31:17Z) - Visualizing Relation Between (De)Motivating Topics and Public Stance
toward COVID-19 Vaccine [0.0]
本研究では,新型コロナウイルス感染拡大に伴うTwitter圏内の話題を検査・分析するインタラクティブな可視化ツールを提案する。
このツールは、視覚分析のあらゆるシナリオに対して容易に一般化することができ、研究者や一般大衆のソーシャルメディアデータの透明性を高めることができる。
論文 参考訳(メタデータ) (2023-06-21T09:01:53Z) - Coronavirus statistics causes emotional bias: a social media text mining
perspective [4.042350304426975]
本稿では,パンデミックに関連するテキストを場所ラベル付きテキストデータから分類する深層学習モデルを提案する。
次に,マルチタスク学習に基づく感情分析を行う。
最後に、感情分析の出力を伴う固定効果パネル回帰を実行する。
論文 参考訳(メタデータ) (2022-11-16T03:36:13Z) - #StayHome or #Marathon? Social Media Enhanced Pandemic Surveillance on
Spatial-temporal Dynamic Graphs [23.67939019353524]
新型コロナウイルスは、公衆衛生、社会、経済のほぼすべての領域に永続的な被害をもたらしている。
既存の研究は、伝統的な統計モデルと流行拡散理論の集約に依存している。
我々は,抽出した出来事と関係に基づいて,ソーシャルメディアがパンデミックの知識を広める新しい枠組みを提案する。
論文 参考訳(メタデータ) (2021-08-08T15:46:05Z) - Steering a Historical Disease Forecasting Model Under a Pandemic: Case
of Flu and COVID-19 [75.99038202534628]
我々は、インフルエンザとCOVID-19が共存する新しいシナリオに、歴史的疾患予測モデルを「操る」ことができる神経伝達学習アーキテクチャであるCALI-Netを提案する。
我々の実験は、現在のパンデミックに歴史的予測モデルを適用することに成功していることを示している。
論文 参考訳(メタデータ) (2020-09-23T22:35:43Z) - Public risk perception and emotion on Twitter during the Covid-19
pandemic [0.0]
このテキストの自然言語解析により、公共リスク知覚の指標をほぼリアルタイムで監視することができる。
我々は、パンデミックの進行の疫学的指標と、2000万のユニークなCovid-19関連ツイートから構築されたパンデミックに対する大衆の認識の指標を比較した。
Twitterユーザーはますます死亡率を固定するが、感情的にも分析的にも減少している。
論文 参考訳(メタデータ) (2020-08-03T13:09:45Z) - Understanding the temporal evolution of COVID-19 research through
machine learning and natural language processing [66.63200823918429]
重症急性呼吸器症候群2号(SARS-CoV-2)による新型コロナウイルス感染症(COVID-19)の流行は、世界中の人々の生活や社会に影響を与え続けている。
私たちは複数のデータソース、すなわちPubMedとArXivを使用し、現在のCOVID-19研究の風景を特徴づけるために、いくつかの機械学習モデルを構築しました。
調査の結果,PubMedとArXivで利用可能な研究の種類は異なることが確認された。
論文 参考訳(メタデータ) (2020-07-22T18:02:39Z) - Effectiveness and Compliance to Social Distancing During COVID-19 [72.94965109944707]
われわれは、米国内での新型コロナウイルスの感染拡大に対する在宅勤務注文の影響を評価するために、詳細なモビリティデータを用いている。
一方向性グランガー因果性(一方向性グランガー因果性)は、家庭で毎日過ごす時間の割合の中央値から、2週間の遅れを伴うCOVID-19関連死亡件数の日数までである。
論文 参考訳(メタデータ) (2020-06-23T03:36:19Z) - Critical Impact of Social Networks Infodemic on Defeating Coronavirus
COVID-19 Pandemic: Twitter-Based Study and Research Directions [1.6571886312953874]
2019年の推計295億人が世界中でソーシャルメディアを利用している。
コロナウイルスの流行は、ソーシャルメディアの津波を引き起こした。
本稿では,Twitterから収集したデータに基づく大規模研究について述べる。
論文 参考訳(メタデータ) (2020-05-18T15:53:13Z) - COVI White Paper [67.04578448931741]
接触追跡は、新型コロナウイルスのパンデミックの進行を変える上で不可欠なツールだ。
カナダで開発されたCovid-19の公衆ピアツーピア接触追跡とリスク認識モバイルアプリケーションであるCOVIの理論的、設計、倫理的考察、プライバシ戦略について概説する。
論文 参考訳(メタデータ) (2020-05-18T07:40:49Z) - The Ivory Tower Lost: How College Students Respond Differently than the
General Public to the COVID-19 Pandemic [66.80677233314002]
新型コロナウイルス感染症(COVID-19)のパンデミックは、政府に究極の課題を提示した。
米国では、新型コロナウイルス感染者が最も多い国で、全国的なソーシャルディスタンシングプロトコルが大統領によって実施されている。
本稿では,この対話型社会における前例のない破壊の社会的意義を,ソーシャルメディア上での人々の意見のマイニングによって発見することを目的とする。
論文 参考訳(メタデータ) (2020-04-21T13:02:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。