論文の概要: High-dimensional Convolutional Networks for Geometric Pattern
Recognition
- arxiv url: http://arxiv.org/abs/2005.08144v1
- Date: Sun, 17 May 2020 01:46:12 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-02 05:07:47.386998
- Title: High-dimensional Convolutional Networks for Geometric Pattern
Recognition
- Title(参考訳): 幾何学的パターン認識のための高次元畳み込みネットワーク
- Authors: Christopher Choy, Junha Lee, Rene Ranftl, Jaesik Park, Vladlen Koltun
- Abstract要約: 本稿では,パターン認識問題に対する高次元畳み込みネットワーク(ConvNet)を提案する。
まず,32次元の高次元空間における線形部分空間の検出における畳み込みネットワークの有効性について検討した。
次に、剛体運動下での3次元登録と画像対応推定に高次元のConvNetを適用する。
- 参考スコア(独自算出の注目度): 75.43345656210992
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Many problems in science and engineering can be formulated in terms of
geometric patterns in high-dimensional spaces. We present high-dimensional
convolutional networks (ConvNets) for pattern recognition problems that arise
in the context of geometric registration. We first study the effectiveness of
convolutional networks in detecting linear subspaces in high-dimensional spaces
with up to 32 dimensions: much higher dimensionality than prior applications of
ConvNets. We then apply high-dimensional ConvNets to 3D registration under
rigid motions and image correspondence estimation. Experiments indicate that
our high-dimensional ConvNets outperform prior approaches that relied on deep
networks based on global pooling operators.
- Abstract(参考訳): 科学や工学における多くの問題は、高次元空間における幾何学的パターンによって定式化することができる。
本稿では,幾何学的登録の文脈で発生するパターン認識問題に対して,高次元畳み込みネットワーク(convnets)を提案する。
まず,32次元の高次元空間における線形部分空間の検出における畳み込みネットワークの有効性について検討した。
次に,剛体運動と画像対応推定の下での3次元登録に高次元convnetを適用する。
実験の結果、我々の高次元ConvNetsは、グローバルプール演算子に基づくディープネットワークに依存する従来のアプローチよりも優れていた。
関連論文リスト
- GeoLRM: Geometry-Aware Large Reconstruction Model for High-Quality 3D Gaussian Generation [65.33726478659304]
GeoLRM(Geometry-Aware Large Restruction Model)は、512kガウスと21の入力画像で11GBのGPUメモリで高品質な資産を予測できる手法である。
従来の作品では、3D構造の本質的な空間性は無視されており、3D画像と2D画像の間の明示的な幾何学的関係は利用されていない。
GeoLRMは、3Dポイントを直接処理し、変形可能なクロスアテンション機構を使用する新しい3D対応トランスフォーマー構造を導入することで、これらの問題に対処する。
論文 参考訳(メタデータ) (2024-06-21T17:49:31Z) - GraphCSPN: Geometry-Aware Depth Completion via Dynamic GCNs [49.55919802779889]
本稿では,グラフ畳み込みに基づく空間伝搬ネットワーク(GraphCSPN)を提案する。
本研究では、幾何学的表現学習において、畳み込みニューラルネットワークとグラフニューラルネットワークを相補的に活用する。
提案手法は,数段の伝搬ステップのみを使用する場合と比較して,最先端の性能を実現する。
論文 参考訳(メタデータ) (2022-10-19T17:56:03Z) - Deep Learning Assisted Optimization for 3D Reconstruction from Single 2D
Line Drawings [13.532686360047574]
本稿では,3次元物体の幾何学的実体間の対関係を検出するために,ディープニューラルネットワークを訓練することを提案する。
CADモデルの大規模なデータセット実験により、幾何学的制約解決パイプラインにおけるディープラーニングを活用することにより、最適化に基づく3D再構成の成功率を大幅に改善できることが示されている。
論文 参考訳(メタデータ) (2022-09-06T17:59:11Z) - Laplacian2Mesh: Laplacian-Based Mesh Understanding [4.808061174740482]
我々は3次元トライアングルメッシュのための新しいフレキシブル畳み込みニューラルネットワーク(CNN)モデルであるLaplacian2Meshを紹介した。
メッシュプーリングはラプラシアンの多空間変換によりネットワークの受容場を拡張するために適用される。
3Dメッシュに適用されたさまざまな学習タスクの実験は、Laplacian2Meshの有効性と効率を実証している。
論文 参考訳(メタデータ) (2022-02-01T10:10:13Z) - Putting 3D Spatially Sparse Networks on a Diet [21.881294733075393]
本稿では, セマンティックセグメンテーションとインスタンスセグメンテーションのためのコンパクトで空間的にスパースな3Dコンブネット(WS3-ConvNet)を提案する。
我々は、コンパクトネットワークを見つけるために、様々なネットワークプルーニング戦略を採用し、我々のWS3-ConvNetが、最小限の性能損失(2-15%の低下)を、15%少ないパラメータ(1/100の圧縮率)で達成することを示す。
最後に、WS3-ConvNetの圧縮パターンを体系的に解析し、圧縮されたネットワークに共通する興味深いスパシティパターンを示し、推論をさらに高速化する。
論文 参考訳(メタデータ) (2021-12-02T15:20:15Z) - UnProjection: Leveraging Inverse-Projections for Visual Analytics of
High-Dimensional Data [63.74032987144699]
提案するNNInvは,プロジェクションやマッピングの逆を近似する深層学習技術である。
NNInvは、2次元投影空間上の任意の点から高次元データを再構成することを学び、ユーザーは視覚分析システムで学習した高次元表現と対話することができる。
論文 参考訳(メタデータ) (2021-11-02T17:11:57Z) - Simulation of three-dimensional quantum systems with projected
entangled-pair states [0.0]
無限射影対合対状態(iPEPS)の2つの縮約手法を3次元で開発・ベンチマークする。
最初のアプローチは、完全な3Dネットワークを近似する効果的な環境を含むテンソルの有限クラスタの収縮に基づいている。
第2のアプローチは、まずネットワークの層を境界iPEPSで反復的に収縮させ、続いて得られた準2Dネットワークを収縮させることにより、ネットワークの完全な収縮を行う。
論文 参考訳(メタデータ) (2021-02-12T19:00:03Z) - Deep Active Surface Models [60.027353171412216]
アクティブサーフェスモデルは複雑な3次元表面をモデル化するのに有用な長い歴史を持っているが、ディープネットワークと組み合わせて使用されるのはアクティブ・コンターのみである。
グラフ畳み込みネットワークにシームレスに統合して、洗練された滑らかさを強制できるレイヤを導入します。
論文 参考訳(メタデータ) (2020-11-17T18:48:28Z) - Graph Signal Processing for Geometric Data and Beyond: Theory and
Applications [55.81966207837108]
グラフ信号処理(GSP)は、不規則な領域に存在する処理信号を可能にする。
GSP法は、幾何データとグラフの接続をブリッジすることで、統一的に幾何データに対する手法である。
最近開発されたグラフニューラルネットワーク(GNN)は、GSPの観点からこれらのネットワークの動作を解釈している。
論文 参考訳(メタデータ) (2020-08-05T03:20:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。