Quantum computing Floquet energy spectra
- URL: http://arxiv.org/abs/2112.04276v3
- Date: Wed, 19 Jul 2023 14:21:09 GMT
- Title: Quantum computing Floquet energy spectra
- Authors: Benedikt Fauseweh, Jian-Xin Zhu
- Abstract summary: We present two quantum algorithms to determine effective Floquet modes and energy spectra.
We combine the defining properties of Floquet modes in time and frequency domains with the expressiveness of parametrized quantum circuits to overcome the limitations of classical approaches.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Quantum systems can be dynamically controlled using time-periodic external
fields, leading to the concept of Floquet engineering, with promising
technological applications. Computing Floquet energy spectra is harder than
only computing ground state properties or single time-dependent trajectories,
and scales exponentially with the Hilbert space dimension. Especially for
strongly correlated systems in the low frequency limit, classical approaches
based on truncation break down. Here, we present two quantum algorithms to
determine effective Floquet modes and energy spectra. We combine the defining
properties of Floquet modes in time and frequency domains with the
expressiveness of parametrized quantum circuits to overcome the limitations of
classical approaches. We benchmark our algorithms and provide an analysis of
the key properties relevant for near-term quantum hardware.
Related papers
- Solving an Industrially Relevant Quantum Chemistry Problem on Quantum Hardware [31.15746974078601]
We calculate the lowest energy eigenvalue of active space Hamiltonians of industrially relevant and strongly correlated metal chelates on trapped ion quantum hardware.
We are able to achieve chemical accuracy by training a variational quantum algorithm on quantum hardware, followed by a classical diagonalization in the subspace of states measured as outputs of the quantum circuit.
arXiv Detail & Related papers (2024-08-20T12:50:15Z) - Capacities of quantum Markovian noise for large times [8.302146576157497]
Given a quantum Markovian noise model, we study the maximum dimension of a classical or quantum system that can be stored for arbitrarily large time.
We show that, unlike the fixed time setting, in the limit of infinite time, the classical and quantum capacities are characterized by efficiently computable properties of the peripheral spectrum of the quantum channel.
arXiv Detail & Related papers (2024-07-31T19:02:50Z) - Universal Euler-Cartan Circuits for Quantum Field Theories [0.0]
A hybrid quantum-classical algorithm is presented for the computation of non-perturbative characteristics of quantum field theories.
The algorithm relies on a universal parametrized quantum circuit ansatz based on Euler and Cartan's decompositions of single and two-qubit operators.
arXiv Detail & Related papers (2024-07-31T01:59:09Z) - Quantum Dissipative Search via Lindbladians [0.0]
We analyze a purely dissipative quantum random walk on an unstructured classical search space.
We show that certain jump operators make the quantum process replicate a classical one, while others yield differences between open quantum (OQRW) and classical random walks.
We also clarify a previously observed quadratic speedup, demonstrating that OQRWs are no more efficient than classical search.
arXiv Detail & Related papers (2024-07-16T14:39:18Z) - Quantum Algorithm to Prepare Quasi-Stationary States [0.0]
We present an efficient quantum search algorithm which produces quasi-stationary states in a dense many-body spectrum.
In time scaling with system size, the algorithm produces states with inverse energy, which can be used to analyze many-body dynamics out to times.
We discuss how this algorithm can be used as a primitive to investigate the mechanisms underlying thermalization transformations and hydrodynamics in many-body quantum systems.
arXiv Detail & Related papers (2024-07-10T17:59:26Z) - Quantum quench dynamics as a shortcut to adiabaticity [31.114245664719455]
We develop and test a quantum algorithm in which the incorporation of a quench step serves as a remedy to the diverging adiabatic timescale.
Our experiments show that this approach significantly outperforms the adiabatic algorithm.
arXiv Detail & Related papers (2024-05-31T17:07:43Z) - Harnessing high-dimensional temporal entanglement using limited interferometric setups [41.94295877935867]
We develop the first complete analysis of high-dimensional entanglement in the polarization-time-domain.
We show how to efficiently certify relevant density matrix elements and security parameters for Quantum Key Distribution.
We propose a novel setup that can further enhance the noise resistance of free-space quantum communication.
arXiv Detail & Related papers (2023-08-08T17:44:43Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - Real-Space, Real-Time Approach to Quantum-Electrodynamical
Time-Dependent Density Functional Theory [55.41644538483948]
The equations are solved by time propagating the wave function on a tensor product of a Fock-space and real-space grid.
Examples include the coupling strength and light frequency dependence of the energies, wave functions, optical absorption spectra, and Rabi splitting magnitudes in cavities.
arXiv Detail & Related papers (2022-09-01T18:49:51Z) - Imaginary Time Propagation on a Quantum Chip [50.591267188664666]
Evolution in imaginary time is a prominent technique for finding the ground state of quantum many-body systems.
We propose an algorithm to implement imaginary time propagation on a quantum computer.
arXiv Detail & Related papers (2021-02-24T12:48:00Z) - Floquet theory for temporal correlations and spectra in time-periodic
open quantum systems: Application to squeezed parametric oscillation beyond
the rotating-wave approximation [0.0]
We propose a method to compute two-time correlations and corresponding spectral densities of time-periodic open quantum systems.
We show how the quantum Langevin equations for the fluctuations can be efficiently integrated by partitioning the time domain into one-period duration intervals.
arXiv Detail & Related papers (2020-05-17T13:25:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.