論文の概要: Visual Memorability for Robotic Interestingness via Unsupervised Online
Learning
- arxiv url: http://arxiv.org/abs/2005.08829v3
- Date: Sat, 18 Jul 2020 16:43:35 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-02 00:26:12.423961
- Title: Visual Memorability for Robotic Interestingness via Unsupervised Online
Learning
- Title(参考訳): 教師なしオンライン学習によるロボットの面白さの視覚的記憶力
- Authors: Chen Wang, Wenshan Wang, Yuheng Qiu, Yafei Hu, and Sebastian Scherer
- Abstract要約: 興味あるシーンをリコールし、識別するための、新しい翻訳不変な視覚記憶を提案する。
これにより、人間的な経験、環境知識、オンライン適応を学習することができる。
提案手法は,ロボットの興味深いデータセットに挑戦する最先端アルゴリズムよりもはるかに精度が高い。
- 参考スコア(独自算出の注目度): 8.747798544090314
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we explore the problem of interesting scene prediction for
mobile robots. This area is currently underexplored but is crucial for many
practical applications such as autonomous exploration and decision making.
Inspired by industrial demands, we first propose a novel translation-invariant
visual memory for recalling and identifying interesting scenes, then design a
three-stage architecture of long-term, short-term, and online learning. This
enables our system to learn human-like experience, environmental knowledge, and
online adaption, respectively. Our approach achieves much higher accuracy than
the state-of-the-art algorithms on challenging robotic interestingness
datasets.
- Abstract(参考訳): 本稿では,移動ロボットにおける興味深いシーン予測の問題について検討する。
この領域は現在未調査だが、自律探査や意思決定など、多くの実用的な用途に不可欠である。
産業的な要求に触発されて,まず興味あるシーンを想起し識別するための新しい翻訳不変視覚メモリを提案し,その後,長期学習,短期学習,オンライン学習の3段階アーキテクチャを設計した。
これにより,人間の体験,環境知識,オンライン適応を学習することができる。
提案手法は,ロボットの興味深いデータセットに対する最先端アルゴリズムよりもはるかに精度が高い。
関連論文リスト
- A Survey of Embodied Learning for Object-Centric Robotic Manipulation [27.569063968870868]
オブジェクト中心のロボット操作のための身体学習は、AIの急速に発展し、挑戦的な分野である。
データ駆動機械学習とは異なり、具体化学習は環境との物理的相互作用を通じてロボット学習に焦点を当てる。
論文 参考訳(メタデータ) (2024-08-21T11:32:09Z) - Commonsense Reasoning for Legged Robot Adaptation with Vision-Language Models [81.55156507635286]
脚のついたロボットは、様々な環境をナビゲートし、幅広い障害を克服することができる。
現在の学習手法は、人間の監督を伴わずに、予期せぬ状況の長い尾への一般化に苦慮することが多い。
本稿では,VLM-Predictive Control (VLM-PC) というシステムを提案する。
論文 参考訳(メタデータ) (2024-07-02T21:00:30Z) - Visual Episodic Memory-based Exploration [0.6374763930914523]
人間では、本質的なモチベーションはオープンエンド認知発達の重要なメカニズムであり、ロボットでは探索に有用である。
本稿では,ロボット探索問題への動機づけの源として,視覚的エピソードメモリの利用について検討する。
論文 参考訳(メタデータ) (2024-05-18T13:58:47Z) - Enhancing Robot Learning through Learned Human-Attention Feature Maps [6.724036710994883]
ロボット学習にフォーカスポイントに関する補助情報を埋め込むことで、学習プロセスの効率性と堅牢性が向上すると考えられる。
本稿では,人間の注意を近似予測モデルでモデル化し,エミュレートするための新しいアプローチを提案する。
我々は,物体検出と模倣学習という2つの学習課題にアプローチを試行する。
論文 参考訳(メタデータ) (2023-08-29T14:23:44Z) - Challenges in Visual Anomaly Detection for Mobile Robots [65.53820325712455]
視覚に基づく自律移動ロボットの異常検出作業について考察する。
関連した視覚異常の種類を分類し,教師なしの深層学習手法で検出する方法について議論する。
論文 参考訳(メタデータ) (2022-09-22T13:26:46Z) - OG-SGG: Ontology-Guided Scene Graph Generation. A Case Study in Transfer
Learning for Telepresence Robotics [124.08684545010664]
画像からのシーングラフ生成は、ロボット工学のようなアプリケーションに非常に関心を持つタスクである。
オントロジー誘導シーングラフ生成(OG-SGG)と呼ばれるフレームワークの初期近似を提案する。
論文 参考訳(メタデータ) (2022-02-21T13:23:15Z) - Unsupervised Online Learning for Robotic Interestingness with Visual
Memory [9.189959184116962]
そこで本研究では,オンライン環境に自動的に適応して,興味深いシーンを素早く報告する手法を開発した。
地下トンネル環境における最先端の非監視手法よりも平均20%高い精度を実現する。
論文 参考訳(メタデータ) (2021-11-18T16:51:39Z) - Low Dimensional State Representation Learning with Robotics Priors in
Continuous Action Spaces [8.692025477306212]
強化学習アルゴリズムは、エンドツーエンドで複雑なロボティクスタスクを解くことができることが証明されている。
本稿では,ロボットの生の知覚情報から得られる高次元の観察から,低次元状態表現の学習と最適ポリシーの学習を組み合わせた枠組みを提案する。
論文 参考訳(メタデータ) (2021-07-04T15:42:01Z) - Actionable Models: Unsupervised Offline Reinforcement Learning of
Robotic Skills [93.12417203541948]
与えられたデータセットの任意の目標状態に到達するために学習することによって、環境の機能的な理解を学ぶ目的を提案する。
提案手法は,高次元カメラ画像上で動作し,これまで見つからなかったシーンやオブジェクトに一般化した実ロボットの様々なスキルを学習することができる。
論文 参考訳(メタデータ) (2021-04-15T20:10:11Z) - Rapid Exploration for Open-World Navigation with Latent Goal Models [78.45339342966196]
多様なオープンワールド環境における自律的な探索とナビゲーションのためのロボット学習システムについて述べる。
本手法のコアとなるのは、画像の非パラメトリックトポロジカルメモリとともに、距離と行動の学習された潜在変数モデルである。
学習方針を規則化するために情報ボトルネックを使用し、(i)目標のコンパクトな視覚的表現、(ii)一般化能力の向上、(iii)探索のための実行可能な目標をサンプリングするためのメカニズムを提供する。
論文 参考訳(メタデータ) (2021-04-12T23:14:41Z) - ViNG: Learning Open-World Navigation with Visual Goals [82.84193221280216]
視覚的目標達成のための学習に基づくナビゲーションシステムを提案する。
提案手法は,我々がvingと呼ぶシステムが,目標条件強化学習のための提案手法を上回っていることを示す。
我々は、ラストマイル配送や倉庫検査など、現実の多くのアプリケーションでViNGを実演する。
論文 参考訳(メタデータ) (2020-12-17T18:22:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。