The Inverse G-Wishart Distribution and Variational Message Passing
- URL: http://arxiv.org/abs/2005.09876v3
- Date: Fri, 11 Dec 2020 06:35:47 GMT
- Title: The Inverse G-Wishart Distribution and Variational Message Passing
- Authors: L. Maestrini and M.P. Wand
- Abstract summary: We show that the Inverse G-Wishart family of distributions enables fundamental variational message passing factor graph fragments to be expressed elegantly and succinctly.
Message passing on a factor graph is a powerful paradigm for the coding of approximate inference algorithms for arbitrarily graphical large models.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Message passing on a factor graph is a powerful paradigm for the coding of
approximate inference algorithms for arbitrarily graphical large models. The
notion of a factor graph fragment allows for compartmentalization of algebra
and computer code. We show that the Inverse G-Wishart family of distributions
enables fundamental variational message passing factor graph fragments to be
expressed elegantly and succinctly. Such fragments arise in models for which
approximate inference concerning covariance matrix or variance parameters is
made, and are ubiquitous in contemporary statistics and machine learning.
Related papers
- The Generalized Skew Spectrum of Graphs [42.70026220176376]
We introduce a new class of graph invariants that are isomorphism-invariant and capable of embedding richer graph structures.<n>By applying generalization-preservings to this family, we improve the Skew Spectrum's expressivity at the same computational cost.
arXiv Detail & Related papers (2025-05-29T16:18:01Z) - Graph Laplacian Wavelet Transformer via Learnable Spectral Decomposition [0.0]
Existing sequence to sequence models for structured language tasks rely heavily on the dot product self attention mechanism.<n>We introduce the Graph Wavelet Transformer (GWT), a novel architecture that replaces this bottleneck with a learnable, multi scale wavelet transform.
arXiv Detail & Related papers (2025-05-09T00:13:23Z) - Graph-Dictionary Signal Model for Sparse Representations of Multivariate Data [49.77103348208835]
We define a novel Graph-Dictionary signal model, where a finite set of graphs characterizes relationships in data distribution through a weighted sum of their Laplacians.
We propose a framework to infer the graph dictionary representation from observed data, along with a bilinear generalization of the primal-dual splitting algorithm to solve the learning problem.
We exploit graph-dictionary representations in a motor imagery decoding task on brain activity data, where we classify imagined motion better than standard methods.
arXiv Detail & Related papers (2024-11-08T17:40:43Z) - Rethinking Dimensional Rationale in Graph Contrastive Learning from Causal Perspective [15.162584339143239]
Graph contrastive learning is a general learning paradigm excelling at capturing invariant information from diverse perturbations in graphs.
Recent works focus on exploring the structural rationale from graphs, thereby increasing the discriminability of the invariant information.
We propose the dimensional rationale-aware graph contrastive learning approach, which introduces a learnable dimensional rationale acquiring network and a redundancy reduction constraint.
arXiv Detail & Related papers (2023-12-16T10:05:18Z) - Advective Diffusion Transformers for Topological Generalization in Graph
Learning [69.2894350228753]
We show how graph diffusion equations extrapolate and generalize in the presence of varying graph topologies.
We propose a novel graph encoder backbone, Advective Diffusion Transformer (ADiT), inspired by advective graph diffusion equations.
arXiv Detail & Related papers (2023-10-10T08:40:47Z) - Creating generalizable downstream graph models with random projections [22.690120515637854]
We investigate graph representation learning approaches that enable models to generalize across graphs.
We show that using random projections to estimate multiple powers of the transition matrix allows us to build a set of isomorphism-invariant features.
The resulting features can be used to recover enough information about the local neighborhood of a node to enable inference with relevance competitive to other approaches.
arXiv Detail & Related papers (2023-02-17T14:27:00Z) - Learning Graphical Factor Models with Riemannian Optimization [70.13748170371889]
This paper proposes a flexible algorithmic framework for graph learning under low-rank structural constraints.
The problem is expressed as penalized maximum likelihood estimation of an elliptical distribution.
We leverage geometries of positive definite matrices and positive semi-definite matrices of fixed rank that are well suited to elliptical models.
arXiv Detail & Related papers (2022-10-21T13:19:45Z) - LDPC codes: comparing cluster graphs to factor graphs [0.0]
In probabilistic graphical models, cluster graphs retain useful dependence between random variables during inference.
This study investigates these benefits in the context of LDPC codes and shows that a cluster graph representation outperforms the traditional factor graph representation.
arXiv Detail & Related papers (2022-04-13T13:02:21Z) - Score-based Generative Modeling of Graphs via the System of Stochastic
Differential Equations [57.15855198512551]
We propose a novel score-based generative model for graphs with a continuous-time framework.
We show that our method is able to generate molecules that lie close to the training distribution yet do not violate the chemical valency rule.
arXiv Detail & Related papers (2022-02-05T08:21:04Z) - Joint Network Topology Inference via Structured Fusion Regularization [70.30364652829164]
Joint network topology inference represents a canonical problem of learning multiple graph Laplacian matrices from heterogeneous graph signals.
We propose a general graph estimator based on a novel structured fusion regularization.
We show that the proposed graph estimator enjoys both high computational efficiency and rigorous theoretical guarantee.
arXiv Detail & Related papers (2021-03-05T04:42:32Z) - Multilayer Clustered Graph Learning [66.94201299553336]
We use contrastive loss as a data fidelity term, in order to properly aggregate the observed layers into a representative graph.
Experiments show that our method leads to a clustered clusters w.r.t.
We learn a clustering algorithm for solving clustering problems.
arXiv Detail & Related papers (2020-10-29T09:58:02Z) - Joint Inference of Multiple Graphs from Matrix Polynomials [34.98220454543502]
Inferring graph structure from observations on the nodes is an important and popular network science task.
We study the problem of jointly inferring multiple graphs from the observation of signals at their nodes.
We propose a convex optimization method along with sufficient conditions that guarantee the recovery of the true graphs.
arXiv Detail & Related papers (2020-10-16T02:45:15Z) - Scaling Graph Clustering with Distributed Sketches [1.1011268090482575]
We present a method inspired by spectral clustering where we instead use matrix sketches derived from random dimension-reducing projections.
We show that our method produces embeddings that yield performant clustering results given a fully-dynamic block model stream.
We also discuss the effects of block model parameters upon the required dimensionality of the subsequent embeddings, and show how random projections could significantly improve the performance of graph clustering in distributed memory.
arXiv Detail & Related papers (2020-07-24T17:38:04Z) - Block-Approximated Exponential Random Graphs [77.4792558024487]
An important challenge in the field of exponential random graphs (ERGs) is the fitting of non-trivial ERGs on large graphs.
We propose an approximative framework to such non-trivial ERGs that result in dyadic independence (i.e., edge independent) distributions.
Our methods are scalable to sparse graphs consisting of millions of nodes.
arXiv Detail & Related papers (2020-02-14T11:42:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.