論文の概要: Efficient and Phase-aware Video Super-resolution for Cardiac MRI
- arxiv url: http://arxiv.org/abs/2005.10626v4
- Date: Wed, 8 Jul 2020 14:35:54 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-30 23:56:05.624395
- Title: Efficient and Phase-aware Video Super-resolution for Cardiac MRI
- Title(参考訳): 心臓mriのための高能率・位相認識ビデオ超解像
- Authors: Jhih-Yuan Lin, Yu-Cheng Chang, Winston H. Hsu
- Abstract要約: 我々は,CMRビデオの超解像問題を解決するために,新しいエンドツーエンドのトレーニング可能なネットワークを提案する。
心的知識をモデルに組み込んで時間的情報の利用を支援する。
- 参考スコア(独自算出の注目度): 23.5319835123499
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Cardiac Magnetic Resonance Imaging (CMR) is widely used since it can
illustrate the structure and function of heart in a non-invasive and painless
way. However, it is time-consuming and high-cost to acquire the high-quality
scans due to the hardware limitation. To this end, we propose a novel
end-to-end trainable network to solve CMR video super-resolution problem
without the hardware upgrade and the scanning protocol modifications. We
incorporate the cardiac knowledge into our model to assist in utilizing the
temporal information. Specifically, we formulate the cardiac knowledge as the
periodic function, which is tailored to meet the cyclic characteristic of CMR.
In addition, the proposed residual of residual learning scheme facilitates the
network to learn the LR-HR mapping in a progressive refinement fashion. This
mechanism enables the network to have the adaptive capability by adjusting
refinement iterations depending on the difficulty of the task. Extensive
experimental results on large-scale datasets demonstrate the superiority of the
proposed method compared with numerous state-of-the-art methods.
- Abstract(参考訳): 心臓磁気共鳴イメージング(CMR)は、非侵襲的で痛みのない方法で心臓の構造と機能を説明することができるため、広く用いられている。
しかし、ハードウェアの制限により高品質なスキャンを得るには時間がかかり、コストがかかる。
そこで本研究では,ハードウェアのアップグレードやスキャンプロトコルの変更を伴わずに,CMRビデオの超解像問題を解決するための新しいエンドツーエンドトレーニングネットワークを提案する。
我々は,心の知識をモデルに取り入れ,時間的情報の利用を支援する。
具体的には,CMRの循環特性を満たすように調整された周期関数として心臓の知識を定式化する。
さらに,残差学習方式の残差は,LR-HRマッピングを漸進的改良方式で学習することを容易にする。
この機構により、タスクの難易度に応じて改善イテレーションを調整することにより、ネットワークに適応性を持たせることができる。
大規模データセットに対する大規模な実験結果から,提案手法の優位性を示した。
関連論文リスト
- Deep Multi-contrast Cardiac MRI Reconstruction via vSHARP with Auxiliary Refinement Network [7.043932618116216]
本稿では,2次元動的マルチコントラスト,マルチスキーム,マルチアクセラレーションMRIの深層学習に基づく再構成手法を提案する。
提案手法は,半2乗変数分割とADMM最適化を利用した最先端のvSHARPモデルを統合する。
論文 参考訳(メタデータ) (2024-11-02T15:59:35Z) - TEAM PILOT -- Learned Feasible Extendable Set of Dynamic MRI Acquisition Trajectories [2.7719338074999547]
本稿では,3次元ウィンドウアテンションとフレキシブルで時間的に拡張可能な獲得軌跡を用いた新しい深部圧縮型センシング手法を提案する。
本手法は既存の手法と比較してトレーニング時間と推論時間を著しく短縮する。
実データによるテストは、我々のアプローチが現在の最先端技術よりも優れていることを示している。
論文 参考訳(メタデータ) (2024-09-19T13:45:13Z) - Deep Separable Spatiotemporal Learning for Fast Dynamic Cardiac MRI [22.7085949508143]
MRIは心臓診断において欠かせない役割を担っている。高速イメージングを可能にするため、k空間データをアンサンプすることができる。
この課題は、ディープラーニング再構築手法における広範なトレーニングデータを必要とする。
本研究では,高度に制限された学習データであっても,例外的に良好に動作可能な次元分離型学習手法を活用する,新規で効率的な手法を提案する。
論文 参考訳(メタデータ) (2024-02-24T23:56:15Z) - Cine cardiac MRI reconstruction using a convolutional recurrent network
with refinement [9.173298795526152]
心臓MRI再建における時間的相関を利用した畳み込みリカレントニューラルネットワーク(CRNN)アーキテクチャについて検討した。
これは、単一画像の超解像度リファインメントモジュールと組み合わせて、単一コイルの再構築を4.4%、正規化平均二乗誤差3.9%改善する。
提案モデルでは, ベースライン症例と比較して有意に拡張され, 心臓MRI再建のさらなる改善に有望な可能性を秘めている。
論文 参考訳(メタデータ) (2023-09-23T14:07:04Z) - CMRxRecon: An open cardiac MRI dataset for the competition of
accelerated image reconstruction [62.61209705638161]
ディープラーニングベースのCMRイメージングアルゴリズムへの関心が高まっている。
ディープラーニング手法は大規模なトレーニングデータセットを必要とする。
このデータセットには300人の被験者のマルチコントラスト、マルチビュー、マルチスライス、マルチコイルCMRイメージングデータが含まれている。
論文 参考訳(メタデータ) (2023-09-19T15:14:42Z) - Implicit Neural Networks with Fourier-Feature Inputs for Free-breathing
Cardiac MRI Reconstruction [21.261567937245808]
本研究は、心臓を暗黙のニューラルネットワークで表現し、心臓の表現が測定値と整合するようにネットワークを適合させる再構築手法を提案する。
提案手法は,最先端の未訓練畳み込みニューラルネットワークと同等あるいはわずかに優れた画像品質を実現する。
論文 参考訳(メタデータ) (2023-05-11T14:14:30Z) - Preservation of High Frequency Content for Deep Learning-Based Medical
Image Classification [74.84221280249876]
大量の胸部ラジオグラフィーの効率的な分析は、医師や放射線技師を助けることができる。
本稿では,視覚情報の効率的な識別と符号化のための離散ウェーブレット変換(DWT)を提案する。
論文 参考訳(メタデータ) (2022-05-08T15:29:54Z) - Towards performant and reliable undersampled MR reconstruction via
diffusion model sampling [67.73698021297022]
DiffuseReconは拡散モデルに基づく新しいMR再構成法である。
観測された信号に基づいて生成過程を導出する。
特定の加速因子に関する追加の訓練は必要としない。
論文 参考訳(メタデータ) (2022-03-08T02:25:38Z) - Multi-modal Aggregation Network for Fast MR Imaging [85.25000133194762]
我々は,完全サンプル化された補助モダリティから補完表現を発見できる,MANetという新しいマルチモーダル・アグリゲーション・ネットワークを提案する。
我々のMANetでは,完全サンプリングされた補助的およびアンアンサンプされた目標モダリティの表現は,特定のネットワークを介して独立に学習される。
私たちのMANetは、$k$-spaceドメインの周波数信号を同時に回復できるハイブリッドドメイン学習フレームワークに従います。
論文 参考訳(メタデータ) (2021-10-15T13:16:59Z) - Learning Frequency-aware Dynamic Network for Efficient Super-Resolution [56.98668484450857]
本稿では、離散コサイン変換(dct)領域の係数に応じて入力を複数の部分に分割する新しい周波数認識動的ネットワークについて検討する。
実際、高周波部は高価な操作で処理され、低周波部は計算負荷を軽減するために安価な操作が割り当てられる。
ベンチマークSISRモデルおよびデータセット上での実験は、周波数認識動的ネットワークが様々なSISRニューラルネットワークに使用できることを示している。
論文 参考訳(メタデータ) (2021-03-15T12:54:26Z) - Video Face Super-Resolution with Motion-Adaptive Feedback Cell [90.73821618795512]
深部畳み込みニューラルネットワーク(CNN)の発展により,ビデオ超解像法(VSR)は近年,顕著な成功を収めている。
本稿では,動作補償を効率的に捕捉し,適応的にネットワークにフィードバックする,シンプルで効果的なブロックである動き適応型フィードバックセル(MAFC)を提案する。
論文 参考訳(メタデータ) (2020-02-15T13:14:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。