論文の概要: Deep Multi-contrast Cardiac MRI Reconstruction via vSHARP with Auxiliary Refinement Network
- arxiv url: http://arxiv.org/abs/2411.01291v1
- Date: Sat, 02 Nov 2024 15:59:35 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-05 21:27:16.837724
- Title: Deep Multi-contrast Cardiac MRI Reconstruction via vSHARP with Auxiliary Refinement Network
- Title(参考訳): 補助リファインメントネットワークを用いたvSHARPを用いた深部マルチコントラスト心エコー画像再構成
- Authors: George Yiasemis, Nikita Moriakov, Jan-Jakob Sonke, Jonas Teuwen,
- Abstract要約: 本稿では,2次元動的マルチコントラスト,マルチスキーム,マルチアクセラレーションMRIの深層学習に基づく再構成手法を提案する。
提案手法は,半2乗変数分割とADMM最適化を利用した最先端のvSHARPモデルを統合する。
- 参考スコア(独自算出の注目度): 7.043932618116216
- License:
- Abstract: Cardiac MRI (CMRI) is a cornerstone imaging modality that provides in-depth insights into cardiac structure and function. Multi-contrast CMRI (MCCMRI), which acquires sequences with varying contrast weightings, significantly enhances diagnostic capabilities by capturing a wide range of cardiac tissue characteristics. However, MCCMRI is often constrained by lengthy acquisition times and susceptibility to motion artifacts. To mitigate these challenges, accelerated imaging techniques that use k-space undersampling via different sampling schemes at acceleration factors have been developed to shorten scan durations. In this context, we propose a deep learning-based reconstruction method for 2D dynamic multi-contrast, multi-scheme, and multi-acceleration MRI. Our approach integrates the state-of-the-art vSHARP model, which utilizes half-quadratic variable splitting and ADMM optimization, with a Variational Network serving as an Auxiliary Refinement Network (ARN) to better adapt to the diverse nature of MCCMRI data. Specifically, the subsampled k-space data is fed into the ARN, which produces an initial prediction for the denoising step used by vSHARP. This, along with the subsampled k-space, is then used by vSHARP to generate high-quality 2D sequence predictions. Our method outperforms traditional reconstruction techniques and other vSHARP-based models.
- Abstract(参考訳): 心臓MRI(英: Cardiac MRI、CMRI)は、心臓の構造と機能に関する詳細な知見を提供する基礎的な画像モダリティである。
コントラスト重み付けの異なる配列を取得するマルチコントラストCT(MCCMRI)は、幅広い心臓組織特性を捉えることで診断能力を著しく向上させる。
しかし、MCCMRIは、長い取得時間と運動アーティファクトへの感受性に制約されることが多い。
これらの課題を軽減するため、加速係数の異なるサンプリングスキームを介してk空間アンダーサンプリングを使用する加速撮像技術が開発され、スキャン期間が短縮された。
本研究では,2次元動的マルチコントラスト,マルチスキーム,マルチアクセラレーションMRIの深層学習に基づく再構成手法を提案する。
提案手法は,半4次変数分割とADMM最適化を利用する最先端のvSHARPモデルと,補助リファインメントネットワーク(Auxiliary Refinement Network,ARN)として機能する変分ネットワークを統合し,MCCMRIデータの多様な性質に適応する。
具体的には、サブサンプリングされたk空間データをALNに入力し、vSHARPが使用するデノナイジングステップの初期予測を生成する。
これは、サブサンプリングされたk-空間と共に、vSHARPによって高品質な2Dシーケンス予測を生成するために使用される。
本手法は,従来の再建手法や他のvSHARPモデルよりも優れている。
関連論文リスト
- Unifying Subsampling Pattern Variations for Compressed Sensing MRI with Neural Operators [72.79532467687427]
圧縮センシングMRI(Compressed Sensing MRI)は、身体の内部解剖像をアンダーサンプルと圧縮された測定値から再構成する。
ディープニューラルネットワークは、高度にアンサンプされた測定結果から高品質なイメージを再構築する大きな可能性を示している。
CS-MRIにおけるサブサンプリングパターンや画像解像度に頑健な統一モデルを提案する。
論文 参考訳(メタデータ) (2024-10-05T20:03:57Z) - NeuroPictor: Refining fMRI-to-Image Reconstruction via Multi-individual Pretraining and Multi-level Modulation [55.51412454263856]
本稿では,fMRI信号を用いた拡散モデル生成過程を直接変調することを提案する。
様々な個人から約67,000 fMRI-imageペアのトレーニングを行うことで,fMRI-to-imageデコーディング能力に優れたモデルが得られた。
論文 参考訳(メタデータ) (2024-03-27T02:42:52Z) - Robust Depth Linear Error Decomposition with Double Total Variation and
Nuclear Norm for Dynamic MRI Reconstruction [15.444386058967579]
Compressed Sensing (CS) に基づく動的MRI k-space 再構成にはまだ問題がある。
本稿では,高アンダーサンプリングフーリエ変換(DFT)を用いた高低レート動的MRI再構成モデルを提案する。
動的MRIデータに対する実験は、再構成精度と時間複雑性の両方の観点から、優れた性能を示す。
論文 参考訳(メタデータ) (2023-10-23T13:34:59Z) - Deep Cardiac MRI Reconstruction with ADMM [7.694990352622926]
心臓画像の分野では, 深層学習(DL)を用いたシネ・マルチコントラスト再建法を提案する。
提案手法は画像領域とk空間領域の両方を最適化し,高い再構成精度を実現する。
論文 参考訳(メタデータ) (2023-10-10T13:46:11Z) - Improved Multi-Shot Diffusion-Weighted MRI with Zero-Shot
Self-Supervised Learning Reconstruction [7.347468593124183]
ゼロMIRIDと呼ばれる新しいmsEPI再構成手法(改良拡散MRIのためのマルチショット画像再構成のためのゼロショット自己教師型学習)を提案する。
本手法は、深層学習に基づく画像正規化技術を組み込むことで、msEPIデータを共同で再構成する。
In-vivo実験で示されるように、最先端の並列イメージング法と比較して優れた結果が得られる。
論文 参考訳(メタデータ) (2023-08-09T17:54:56Z) - K-Space-Aware Cross-Modality Score for Synthesized Neuroimage Quality
Assessment [71.27193056354741]
クロスモダリティな医用画像合成をどう評価するかという問題は、ほとんど解明されていない。
本稿では,この課題の進展を促すため,新しい指標K-CROSSを提案する。
K-CROSSは、トレーニング済みのマルチモードセグメンテーションネットワークを使用して、病変の位置を予測する。
論文 参考訳(メタデータ) (2023-07-10T01:26:48Z) - Holistic Multi-Slice Framework for Dynamic Simultaneous Multi-Slice MRI
Reconstruction [8.02450593595801]
動的SMS再構築のための新しいDLベースのフレームワークを提案する。
本研究の主な貢献は,1)データ変換ステップと,2)データ不足問題に対処するMR物理誘導転送学習戦略を効果的に活用するネットワーク設計の組み合わせである。
論文 参考訳(メタデータ) (2023-01-03T21:09:51Z) - Transformer-empowered Multi-scale Contextual Matching and Aggregation
for Multi-contrast MRI Super-resolution [55.52779466954026]
マルチコントラスト・スーパーレゾリューション (SR) 再構成により, SR画像の高画質化が期待できる。
既存の手法では、これらの特徴をマッチングし、融合させる効果的なメカニズムが欠如している。
そこで本稿では,トランスフォーマーを利用したマルチスケールコンテキストマッチングとアグリゲーション技術を開発することで,これらの問題を解決する新しいネットワークを提案する。
論文 参考訳(メタデータ) (2022-03-26T01:42:59Z) - Deep MRI Reconstruction with Radial Subsampling [2.7998963147546148]
k空間データにサブサンプリングマスクを適用することは、実際の臨床環境でk空間データの迅速な取得をシミュレートする方法である。
訓練された深層ニューラルネットワークが出力する再構成の質に対して,リチリニア・ラジアル・リフレクション・サブサンプリングを適用させる効果を比較検討し,検討した。
論文 参考訳(メタデータ) (2021-08-17T17:45:51Z) - Adaptive Gradient Balancing for UndersampledMRI Reconstruction and
Image-to-Image Translation [60.663499381212425]
本研究では,新しい適応勾配バランス手法を併用したwasserstein生成逆ネットワークを用いて,画質の向上を図る。
MRIでは、他の技術よりも鮮明な画像を生成する高品質の再構築を維持しながら、アーティファクトを最小限に抑えます。
論文 参考訳(メタデータ) (2021-04-05T13:05:22Z) - Multifold Acceleration of Diffusion MRI via Slice-Interleaved Diffusion
Encoding (SIDE) [50.65891535040752]
本稿では,Slice-Interleaved Diffusionと呼ばれる拡散符号化方式を提案する。
SIDEは、拡散重み付き(DW)画像ボリュームを異なる拡散勾配で符号化したスライスでインターリーブする。
また,高いスライスアンサンプデータからDW画像を効果的に再構成するためのディープラーニングに基づく手法を提案する。
論文 参考訳(メタデータ) (2020-02-25T14:48:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。