Large gradients via correlation in random parameterized quantum circuits
- URL: http://arxiv.org/abs/2005.12200v2
- Date: Tue, 26 Jan 2021 21:33:03 GMT
- Title: Large gradients via correlation in random parameterized quantum circuits
- Authors: Tyler Volkoff and Patrick J. Coles
- Abstract summary: The presence of exponentially vanishing gradients in cost function landscapes is an obstacle to optimization by gradient descent methods.
We prove that reducing the dimensionality of the parameter space can allow one to circumvent the vanishing gradient phenomenon.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Scaling of variational quantum algorithms to large problem sizes requires
efficient optimization of random parameterized quantum circuits. For such
circuits with uncorrelated parameters, the presence of exponentially vanishing
gradients in cost function landscapes is an obstacle to optimization by
gradient descent methods. In this work, we prove that reducing the
dimensionality of the parameter space by utilizing circuit modules containing
spatially or temporally correlated gate layers can allow one to circumvent the
vanishing gradient phenomenon. Examples are drawn from random separable
circuits and asymptotically optimal variational versions of Grover's algorithm
based on the quantum alternating operator ansatz (QAOA). In the latter
scenario, our bounds on cost function variation imply a transition between
vanishing gradients and efficient trainability as the number of layers is
increased toward $\mathcal{O}(2^{n/2})$, the optimal oracle complexity of
quantum unstructured search.
Related papers
- Linearly simplified QAOA parameters and transferability [0.6834295298053009]
Quantum Approximate Algorithm Optimization (QAOA) provides a way to solve optimization problems using quantum computers.
We present some numerical results that are obtained for instances of the random Ising model and of the max-cut problem.
arXiv Detail & Related papers (2024-05-01T17:34:32Z) - Bayesian Parameterized Quantum Circuit Optimization (BPQCO): A task and hardware-dependent approach [49.89480853499917]
Variational quantum algorithms (VQA) have emerged as a promising quantum alternative for solving optimization and machine learning problems.
In this paper, we experimentally demonstrate the influence of the circuit design on the performance obtained for two classification problems.
We also study the degradation of the obtained circuits in the presence of noise when simulating real quantum computers.
arXiv Detail & Related papers (2024-04-17T11:00:12Z) - Efficient Quantum Circuits for Non-Unitary and Unitary Diagonal Operators with Space-Time-Accuracy trade-offs [1.0749601922718608]
Unitary and non-unitary diagonal operators are fundamental building blocks in quantum algorithms.
We introduce a general approach to implement unitary and non-unitary diagonal operators with efficient-adjustable-depth quantum circuits.
arXiv Detail & Related papers (2024-04-03T15:42:25Z) - Random coordinate descent: a simple alternative for optimizing parameterized quantum circuits [4.112419132722306]
This paper introduces a random coordinate descent algorithm as a practical and easy-to-implement alternative to the full gradient descent algorithm.
Motivated by the behavior of measurement noise in the practical optimization of parameterized quantum circuits, this paper presents an optimization problem setting amenable to analysis.
arXiv Detail & Related papers (2023-10-31T18:55:45Z) - GRAPE optimization for open quantum systems with time-dependent
decoherence rates driven by coherent and incoherent controls [77.34726150561087]
The GRadient Ascent Pulse Engineering (GRAPE) method is widely used for optimization in quantum control.
We adopt GRAPE method for optimizing objective functionals for open quantum systems driven by both coherent and incoherent controls.
The efficiency of the algorithm is demonstrated through numerical simulations for the state-to-state transition problem.
arXiv Detail & Related papers (2023-07-17T13:37:18Z) - Parsimonious Optimisation of Parameters in Variational Quantum Circuits [1.303764728768944]
We propose a novel Quantum-Gradient Sampling that requires the execution of at most two circuits per iteration to update the optimisable parameters.
Our proposed method achieves similar convergence rates to classical gradient descent, and empirically outperforms gradient coordinate descent, and SPSA.
arXiv Detail & Related papers (2023-06-20T18:50:18Z) - Twisted hybrid algorithms for combinatorial optimization [68.8204255655161]
Proposed hybrid algorithms encode a cost function into a problem Hamiltonian and optimize its energy by varying over a set of states with low circuit complexity.
We show that for levels $p=2,ldots, 6$, the level $p$ can be reduced by one while roughly maintaining the expected approximation ratio.
arXiv Detail & Related papers (2022-03-01T19:47:16Z) - Variational Quantum Optimization with Multi-Basis Encodings [62.72309460291971]
We introduce a new variational quantum algorithm that benefits from two innovations: multi-basis graph complexity and nonlinear activation functions.
Our results in increased optimization performance, two increase in effective landscapes and a reduction in measurement progress.
arXiv Detail & Related papers (2021-06-24T20:16:02Z) - Adaptive pruning-based optimization of parameterized quantum circuits [62.997667081978825]
Variisy hybrid quantum-classical algorithms are powerful tools to maximize the use of Noisy Intermediate Scale Quantum devices.
We propose a strategy for such ansatze used in variational quantum algorithms, which we call "Efficient Circuit Training" (PECT)
Instead of optimizing all of the ansatz parameters at once, PECT launches a sequence of variational algorithms.
arXiv Detail & Related papers (2020-10-01T18:14:11Z) - Measuring Analytic Gradients of General Quantum Evolution with the
Stochastic Parameter Shift Rule [0.0]
We study the problem of estimating the gradient of the function to be optimized directly from quantum measurements.
We derive a mathematically exact formula that provides an algorithm for estimating the gradient of any multi-qubit parametric quantum evolution.
Our algorithm continues to work, although with some approximations, even when all the available quantum gates are noisy.
arXiv Detail & Related papers (2020-05-20T18:24:11Z) - Improving the Performance of Deep Quantum Optimization Algorithms with
Continuous Gate Sets [47.00474212574662]
Variational quantum algorithms are believed to be promising for solving computationally hard problems.
In this paper, we experimentally investigate the circuit-depth-dependent performance of QAOA applied to exact-cover problem instances.
Our results demonstrate that the use of continuous gate sets may be a key component in extending the impact of near-term quantum computers.
arXiv Detail & Related papers (2020-05-11T17:20:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.