Optimal interpolation-based coordinate descent method for parameterized quantum circuits
- URL: http://arxiv.org/abs/2503.04620v1
- Date: Thu, 06 Mar 2025 17:06:47 GMT
- Title: Optimal interpolation-based coordinate descent method for parameterized quantum circuits
- Authors: Zhijian Lai, Jiang Hu, Taehee Ko, Jiayuan Wu, Dong An,
- Abstract summary: We propose an Optimal Interpolation-based Coordinate Descent (OICD) method to solve the parameter optimization problem.<n>Our OICD method employs a technique to approximate the cost function of a parameterized quantum circuit.<n>We show that our OICD method can simultaneously minimize the mean squared error, the condition number of the gradient matrix, and the average variance of derivatives of the cost function.
- Score: 3.725905098180926
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Parameterized quantum circuits appear ubiquitously in the design of many quantum algorithms, such as variational quantum algorithms, where the optimization of parameters is crucial for algorithmic efficiency. In this work, we propose an Optimal Interpolation-based Coordinate Descent (OICD) method to solve the parameter optimization problem that arises in parameterized quantum circuits. Our OICD method employs an interpolation technique to approximate the cost function of a parameterized quantum circuit, effectively recovering its trigonometric characteristics, then performs an argmin update on a single parameter per iteration on a classical computer. We determine the optimal interpolation nodes in our OICD method to mitigate the impact of statistical errors from quantum measurements. Additionally, for the case of equidistant frequencies -- commonly encountered when the Hermitian generators are Pauli operators -- we show that the optimal interpolation nodes are equidistant nodes, and our OICD method can simultaneously minimize the mean squared error, the condition number of the interpolation matrix, and the average variance of derivatives of the cost function. We perform numerical simulations of our OICD method using Qiskit Aer and test its performance on the maxcut problem, the transverse field Ising model, and the XXZ model. Numerical results imply that our OICD method is more efficient than the commonly used stochastic gradient descent method and the existing random coordinate descent method.
Related papers
- Transferring linearly fixed QAOA angles: performance and real device results [0.0]
We investigate a simplified approach that combines linear parameterization with parameter transferring, reducing the parameter space to just 4 dimensions regardless of the number of layers.
We compare this combined approach with standard QAOA and other parameter setting strategies such as INTERP and FOURIER, which require computationally demanding incremental layer-by-layer optimization.
Our experiments extend from classical simulation to actual quantum hardware implementation on IBM's Eagle processor, demonstrating the approach's viability on current NISQ devices.
arXiv Detail & Related papers (2025-04-17T04:17:51Z) - Fast Expectation Value Calculation Speedup of Quantum Approximate Optimization Algorithm: HoLCUs QAOA [55.2480439325792]
We present a new method for calculating expectation values of operators that can be expressed as a linear combination of unitary (LCU) operators.<n>This method is general for any quantum algorithm and is of particular interest in the acceleration of variational quantum algorithms.
arXiv Detail & Related papers (2025-03-03T17:15:23Z) - Bayesian Parameterized Quantum Circuit Optimization (BPQCO): A task and hardware-dependent approach [49.89480853499917]
Variational quantum algorithms (VQA) have emerged as a promising quantum alternative for solving optimization and machine learning problems.
In this paper, we experimentally demonstrate the influence of the circuit design on the performance obtained for two classification problems.
We also study the degradation of the obtained circuits in the presence of noise when simulating real quantum computers.
arXiv Detail & Related papers (2024-04-17T11:00:12Z) - Stochastic Optimization for Non-convex Problem with Inexact Hessian
Matrix, Gradient, and Function [99.31457740916815]
Trust-region (TR) and adaptive regularization using cubics have proven to have some very appealing theoretical properties.
We show that TR and ARC methods can simultaneously provide inexact computations of the Hessian, gradient, and function values.
arXiv Detail & Related papers (2023-10-18T10:29:58Z) - Probabilistic tensor optimization of quantum circuits for the
max-$k$-cut problem [0.0]
We propose a technique for optimizing parameterized circuits in variational quantum algorithms.
We illustrate our approach on the example of the quantum approximate optimization algorithm (QAOA) applied to the max-$k$-cut problem.
arXiv Detail & Related papers (2023-10-16T12:56:22Z) - Randomized semi-quantum matrix processing [0.0]
We present a hybrid quantum-classical framework for simulating generic matrix functions.
The method is based on randomization over the Chebyshev approximation of the target function.
We prove advantages on average depths, including quadratic speed-ups on costly parameters.
arXiv Detail & Related papers (2023-07-21T18:00:28Z) - Automatic and effective discovery of quantum kernels [41.61572387137452]
Quantum computing can empower machine learning models by enabling kernel machines to leverage quantum kernels for representing similarity measures between data.<n>We present an approach to this problem, which employs optimization techniques, similar to those used in neural architecture search and AutoML.<n>The results obtained by testing our approach on a high-energy physics problem demonstrate that, in the best-case scenario, we can either match or improve testing accuracy with respect to the manual design approach.
arXiv Detail & Related papers (2022-09-22T16:42:14Z) - Quantum Goemans-Williamson Algorithm with the Hadamard Test and
Approximate Amplitude Constraints [62.72309460291971]
We introduce a variational quantum algorithm for Goemans-Williamson algorithm that uses only $n+1$ qubits.
Efficient optimization is achieved by encoding the objective matrix as a properly parameterized unitary conditioned on an auxilary qubit.
We demonstrate the effectiveness of our protocol by devising an efficient quantum implementation of the Goemans-Williamson algorithm for various NP-hard problems.
arXiv Detail & Related papers (2022-06-30T03:15:23Z) - Twisted hybrid algorithms for combinatorial optimization [68.8204255655161]
Proposed hybrid algorithms encode a cost function into a problem Hamiltonian and optimize its energy by varying over a set of states with low circuit complexity.
We show that for levels $p=2,ldots, 6$, the level $p$ can be reduced by one while roughly maintaining the expected approximation ratio.
arXiv Detail & Related papers (2022-03-01T19:47:16Z) - Adaptive pruning-based optimization of parameterized quantum circuits [62.997667081978825]
Variisy hybrid quantum-classical algorithms are powerful tools to maximize the use of Noisy Intermediate Scale Quantum devices.
We propose a strategy for such ansatze used in variational quantum algorithms, which we call "Efficient Circuit Training" (PECT)
Instead of optimizing all of the ansatz parameters at once, PECT launches a sequence of variational algorithms.
arXiv Detail & Related papers (2020-10-01T18:14:11Z) - Large gradients via correlation in random parameterized quantum circuits [0.0]
The presence of exponentially vanishing gradients in cost function landscapes is an obstacle to optimization by gradient descent methods.
We prove that reducing the dimensionality of the parameter space can allow one to circumvent the vanishing gradient phenomenon.
arXiv Detail & Related papers (2020-05-25T16:15:53Z) - Cross Entropy Hyperparameter Optimization for Constrained Problem
Hamiltonians Applied to QAOA [68.11912614360878]
Hybrid quantum-classical algorithms such as Quantum Approximate Optimization Algorithm (QAOA) are considered as one of the most encouraging approaches for taking advantage of near-term quantum computers in practical applications.
Such algorithms are usually implemented in a variational form, combining a classical optimization method with a quantum machine to find good solutions to an optimization problem.
In this study we apply a Cross-Entropy method to shape this landscape, which allows the classical parameter to find better parameters more easily and hence results in an improved performance.
arXiv Detail & Related papers (2020-03-11T13:52:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.