論文の概要: Trainability of Dissipative Perceptron-Based Quantum Neural Networks
- arxiv url: http://arxiv.org/abs/2005.12458v2
- Date: Fri, 10 Jun 2022 09:33:04 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-29 00:51:47.622783
- Title: Trainability of Dissipative Perceptron-Based Quantum Neural Networks
- Title(参考訳): 散逸性パーセプトロンに基づく量子ニューラルネットワークのトレーサビリティ
- Authors: Kunal Sharma, M. Cerezo, Lukasz Cincio, Patrick J. Coles
- Abstract要約: 分散QNN (Dissipative QNNs) と呼ばれる最近提案されたアーキテクチャの勾配スケーリング(従ってトレーニング容易性)を分析した。
DQNNは不規則な高原(すなわち、量子ビット数で指数関数的に消える勾配)を示すことができる。
- 参考スコア(独自算出の注目度): 0.8258451067861933
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Several architectures have been proposed for quantum neural networks (QNNs),
with the goal of efficiently performing machine learning tasks on quantum data.
Rigorous scaling results are urgently needed for specific QNN constructions to
understand which, if any, will be trainable at a large scale. Here, we analyze
the gradient scaling (and hence the trainability) for a recently proposed
architecture that we called dissipative QNNs (DQNNs), where the input qubits of
each layer are discarded at the layer's output. We find that DQNNs can exhibit
barren plateaus, i.e., gradients that vanish exponentially in the number of
qubits. Moreover, we provide quantitative bounds on the scaling of the gradient
for DQNNs under different conditions, such as different cost functions and
circuit depths, and show that trainability is not always guaranteed.
- Abstract(参考訳): 量子ニューラルネットワーク(QNN)には、量子データ上で機械学習タスクを効率的に実行する目的で、いくつかのアーキテクチャが提案されている。
特定のQNN構築において、もしある場合、大規模なトレーニングが可能かを理解するために、厳密なスケーリング結果が緊急に必要となる。
本稿では,最近提案するdissipative qnns(dqnns)アーキテクチャの勾配スケーリング(およびトレーサビリティ)を分析し,各レイヤの入力量子ビットをレイヤの出力に破棄する。
DQNNは不規則な高原、すなわち量子ビット数で指数関数的に消える勾配を示すことができる。
さらに,DQNNの勾配のスケーリングについて,コスト関数や回路深度などの異なる条件下での定量的境界を提供し,トレーニング性が常に保証されているとは限らないことを示す。
関連論文リスト
- Projected Stochastic Gradient Descent with Quantum Annealed Binary Gradients [51.82488018573326]
重み付きニューラルネットワークのトレーニングに適した,新しいレイヤワイドオプティマイザであるQP-SBGDを提案する。
BNNは、深層学習モデルの計算要求とエネルギー消費を最小限の精度で削減する。
提案アルゴリズムは階層的に実装されており,リソース制限量子ハードウェア上での大規模ネットワークのトレーニングに適している。
論文 参考訳(メタデータ) (2023-10-23T17:32:38Z) - Scaling Limits of Quantum Repeater Networks [62.75241407271626]
量子ネットワーク(QN)は、セキュアな通信、強化されたセンシング、効率的な分散量子コンピューティングのための有望なプラットフォームである。
量子状態の脆弱な性質のため、これらのネットワークはスケーラビリティの観点から大きな課題に直面している。
本稿では,量子リピータネットワーク(QRN)のスケーリング限界について解析する。
論文 参考訳(メタデータ) (2023-05-15T14:57:01Z) - QuanGCN: Noise-Adaptive Training for Robust Quantum Graph Convolutional
Networks [124.7972093110732]
本稿では,ノード間の局所的なメッセージパッシングをクロスゲート量子演算のシーケンスで学習する量子グラフ畳み込みネットワーク(QuanGCN)を提案する。
現代の量子デバイスから固有のノイズを緩和するために、ノードの接続をスパーズするためにスパース制約を適用します。
我々のQuanGCNは、いくつかのベンチマークグラフデータセットの古典的なアルゴリズムよりも機能的に同等か、さらに優れている。
論文 参考訳(メタデータ) (2022-11-09T21:43:16Z) - Toward Trainability of Deep Quantum Neural Networks [87.04438831673063]
ランダムな構造を持つ量子ニューラルネットワーク(QNN)は、回路深さと量子ビット数が増加するにつれて指数関数的に減少する勾配のため、トレーニング性に乏しい。
理論的保証のある深部QNNに対して、消滅する勾配問題に対する最初の実現可能な解決策を提供する。
論文 参考訳(メタデータ) (2021-12-30T10:27:08Z) - Exponentially Many Local Minima in Quantum Neural Networks [9.442139459221785]
量子ニューラルネットワーク(QNN)は、古典的ニューラルネットワークと同じような約束のため、重要な量子アプリケーションである。
我々は,QNNの損失関数のランドスケープを定量的に調査し,トレーニング用に単純だが極めて難しいQNNインスタンスのクラスを同定する。
我々は、我々の構成が、典型的な勾配ベースの回路で実際に難しい事例となることを実証的に確認する。
論文 参考訳(メタデータ) (2021-10-06T03:23:44Z) - Branching Quantum Convolutional Neural Networks [0.0]
小型量子コンピュータは、大規模量子および非常に大規模な古典的データセット上での学習タスクにおいて、既に潜在的な増加を見せている。
本稿では、分岐量子畳み込みニューラルネットワークであるQCNN(bQCNN)を、かなり高い表現性で一般化する。
論文 参考訳(メタデータ) (2020-12-28T19:00:03Z) - Toward Trainability of Quantum Neural Networks [87.04438831673063]
量子ニューラルネットワーク(QNN)は、量子スピードアップを達成するために古典的ニューラルネットワークの一般化として提案されている。
QNNのトレーニングには、入力キュービット数に指数関数的に勾配速度がなくなるため、非常に大きなボトルネックが存在する。
木テンソルとステップ制御された構造を持つQNNを二分分類に適用し,ランダムな構造を持つQNNと比較してより高速な収束率と精度を示す。
論文 参考訳(メタデータ) (2020-11-12T08:32:04Z) - Absence of Barren Plateaus in Quantum Convolutional Neural Networks [0.0]
量子畳み込みニューラルネットワーク(QCNN)が提案されている。
我々はQCNNアーキテクチャのパラメータの勾配スケーリングを厳格に分析する。
論文 参考訳(メタデータ) (2020-11-05T16:46:13Z) - On the learnability of quantum neural networks [132.1981461292324]
本稿では,量子ニューラルネットワーク(QNN)の学習可能性について考察する。
また,概念をQNNで効率的に学習することができれば,ゲートノイズがあってもQNNで効果的に学習できることを示す。
論文 参考訳(メタデータ) (2020-07-24T06:34:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。