Noise Mitigation with Delay Pulses in the IBM Quantum Experience
- URL: http://arxiv.org/abs/2005.12520v1
- Date: Tue, 26 May 2020 05:37:00 GMT
- Title: Noise Mitigation with Delay Pulses in the IBM Quantum Experience
- Authors: Sam Tomkins and Rog\'erio de Sousa
- Abstract summary: One of the greatest challenges for current quantum computing hardware is how to obtain reliable results from noisy devices.
A recent paper described a method for injecting noise by stretching gate times, enabling the calculation of quantum expectation values as a function of the amount of noise in the IBM-Q devices. Extrapolating to zero noise led to excellent agreement with exact results.
Here an alternative scheme is described that employs the intentional addition of identity pulses, pausing the device periodically in order to gradually subject the quantum computation to increased levels of noise.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: One of the greatest challenges for current quantum computing hardware is how
to obtain reliable results from noisy devices. A recent paper [A. Kandala et
al., Nature 567, 491 (2019)] described a method for injecting noise by
stretching gate times, enabling the calculation of quantum expectation values
as a function of the amount of noise in the IBM-Q devices. Extrapolating to
zero noise led to excellent agreement with exact results. Here an alternative
scheme is described that employs the intentional addition of identity pulses,
pausing the device periodically in order to gradually subject the quantum
computation to increased levels of noise. The scheme is implemented in a one
qubit circuit on an IBM-Q device. It is determined that this is an effective
method for controlled addition of noise, and further, that using noisy results
to perform extrapolation can lead to improvements in the final output, provided
careful attention is paid to how the extrapolation is carried out.
Related papers
- Optimized noise-assisted simulation of the Lindblad equation with
time-dependent coefficients on a noisy quantum processor [0.6990493129893112]
Noise can be an asset in digital quantum simulations of open systems on Noisy Intermediate-Scale Quantum (NISQ) devices.
We introduce an optimized decoherence rate control scheme that can significantly reduce computational requirements by multiple orders of magnitude.
arXiv Detail & Related papers (2024-02-12T12:48:03Z) - Quantum error mitigation for Fourier moment computation [49.1574468325115]
This paper focuses on the computation of Fourier moments within the context of a nuclear effective field theory on superconducting quantum hardware.
The study integrates echo verification and noise renormalization into Hadamard tests using control reversal gates.
The analysis, conducted using noise models, reveals a significant reduction in noise strength by two orders of magnitude.
arXiv Detail & Related papers (2024-01-23T19:10:24Z) - QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEA is an in-time sparse exploration for noise-adaptive quantum circuits.
It aims to achieve two key objectives: (1) implicit circuits capacity during training and (2) noise robustness.
Our method establishes state-of-the-art results with only half the number of quantum gates and 2x time saving of circuit executions.
arXiv Detail & Related papers (2024-01-10T22:33:00Z) - Adaptive quantum error mitigation using pulse-based inverse evolutions [0.0]
We introduce a QEM method termed Adaptive KIK' that adapts to the noise level of the target device.
The implementation of the method is experimentally simple -- it does not involve any tomographic information or machine-learning stage.
We demonstrate our findings in the IBM quantum computers and through numerical simulations.
arXiv Detail & Related papers (2023-03-09T02:50:53Z) - Pulse-efficient quantum machine learning [0.0]
We investigate the impact of pulse-efficient circuits on quantum machine learning algorithms.
We find that pulse-efficient transpilation vastly reduces average circuit durations.
We conclude by applying pulse-efficient transpilation to the Hamiltonian Variational Ansatz and show that it delays the onset of noise-induced barren plateaus.
arXiv Detail & Related papers (2022-11-02T18:00:01Z) - Iterative Qubits Management for Quantum Index Searching in a Hybrid
System [56.39703478198019]
IQuCS aims at index searching and counting in a quantum-classical hybrid system.
We implement IQuCS with Qiskit and conduct intensive experiments.
Results demonstrate that it reduces qubits consumption by up to 66.2%.
arXiv Detail & Related papers (2022-09-22T21:54:28Z) - Characterizing and mitigating coherent errors in a trapped ion quantum
processor using hidden inverses [0.20315704654772418]
Quantum computing testbeds exhibit high-fidelity quantum control over small collections of qubits.
These noisy intermediate-scale devices can support a sufficient number of sequential operations prior to decoherence.
While the results of these algorithms are imperfect, these imperfections can help bootstrap quantum computer testbed development.
arXiv Detail & Related papers (2022-05-27T20:35:24Z) - Achieving fault tolerance against amplitude-damping noise [1.7289359743609742]
We develop a protocol for fault-tolerant encoded quantum computing components in the presence of amplitude-damping noise.
We describe a universal set of fault-tolerant encoded gadgets and compute the pseudothreshold for the noise.
Our work demonstrates the possibility of applying the ideas of quantum fault tolerance to targeted noise models.
arXiv Detail & Related papers (2021-07-12T14:59:54Z) - Pulse-level noisy quantum circuits with QuTiP [53.356579534933765]
We introduce new tools in qutip-qip, QuTiP's quantum information processing package.
These tools simulate quantum circuits at the pulse level, leveraging QuTiP's quantum dynamics solvers and control optimization features.
We show how quantum circuits can be compiled on simulated processors, with control pulses acting on a target Hamiltonian.
arXiv Detail & Related papers (2021-05-20T17:06:52Z) - Quantum circuit architecture search for variational quantum algorithms [88.71725630554758]
We propose a resource and runtime efficient scheme termed quantum architecture search (QAS)
QAS automatically seeks a near-optimal ansatz to balance benefits and side-effects brought by adding more noisy quantum gates.
We implement QAS on both the numerical simulator and real quantum hardware, via the IBM cloud, to accomplish data classification and quantum chemistry tasks.
arXiv Detail & Related papers (2020-10-20T12:06:27Z) - A deep learning model for noise prediction on near-term quantum devices [137.6408511310322]
We train a convolutional neural network on experimental data from a quantum device to learn a hardware-specific noise model.
A compiler then uses the trained network as a noise predictor and inserts sequences of gates in circuits so as to minimize expected noise.
arXiv Detail & Related papers (2020-05-21T17:47:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.