Phonon counting thermometry of an ultracoherent membrane resonator near
its motional ground state
- URL: http://arxiv.org/abs/2005.14173v1
- Date: Thu, 28 May 2020 17:43:17 GMT
- Title: Phonon counting thermometry of an ultracoherent membrane resonator near
its motional ground state
- Authors: Ivan Galinskiy, Yeghishe Tsaturyan, Micha{\l} Parniak, Eugene S.
Polzik
- Abstract summary: Generation of non-Gaussian quantum states of macroscopic mechanical objects is key to a number of challenges in quantum information science.
Here we demonstrate a technique which allows for generation and detection of a quantum state of motion by phonon counting measurements.
With an effective mass in the nanogram range, our system lends itself for studies of long-lived non-Gaussian motional states with some of the heaviest objects to date.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Generation of non-Gaussian quantum states of macroscopic mechanical objects
is key to a number of challenges in quantum information science, ranging from
fundamental tests of decoherence to quantum communication and sensing. Heralded
generation of single-phonon states of mechanical motion is an attractive way
towards this goal, as it is, in principle, not limited by the object size. Here
we demonstrate a technique which allows for generation and detection of a
quantum state of motion by phonon counting measurements near the ground state
of a 1.5 MHz micromechanical oscillator. We detect scattered photons from a
membrane-in-the-middle optomechanical system using an ultra-narrowband optical
filter, and perform Raman-ratio thermometry and second-order intensity
interferometry near the motional ground state ($\bar{n}=0.23\pm0.02$ phonons).
With an effective mass in the nanogram range, our system lends itself for
studies of long-lived non-Gaussian motional states with some of the heaviest
objects to date.
Related papers
- Quantum error mitigation for Fourier moment computation [49.1574468325115]
This paper focuses on the computation of Fourier moments within the context of a nuclear effective field theory on superconducting quantum hardware.
The study integrates echo verification and noise renormalization into Hadamard tests using control reversal gates.
The analysis, conducted using noise models, reveals a significant reduction in noise strength by two orders of magnitude.
arXiv Detail & Related papers (2024-01-23T19:10:24Z) - A Superconducting Single-Atom Phonon Laser [0.0]
We experimentally demonstrate a direct quantum-acoustic equivalent of a single-atom laser.
A single superconducting qubit coupled to a high-overtone bulk acoustic resonator is used to drive the onset of phonon lasing.
We observe the absence of a sharp lower lasing threshold and characteristic upper lasing threshold, unique predictions of single-atom lasing.
arXiv Detail & Related papers (2023-12-21T15:37:55Z) - Macroscopic quantum entanglement between an optomechanical cavity and a
continuous field in presence of non-Markovian noise [10.363406065066538]
We develop a framework to quantify the amount of entanglement in the system numerically.
We apply our framework to the case of the Advanced Laser Interferometer Gravitational-Wave Observatory.
arXiv Detail & Related papers (2023-09-21T23:10:29Z) - Enhanced optomechanical interaction in the unbalanced interferometer [40.96261204117952]
Quantum optomechanical systems enable the study of fundamental questions on quantum nature of massive objects.
Here we propose a modification of the Michelson-Sagnac interferometer, which allows to boost the optomechanical coupling strength.
arXiv Detail & Related papers (2023-05-11T14:24:34Z) - Schr\"odinger cat states of a 16-microgram mechanical oscillator [54.35850218188371]
The superposition principle is one of the most fundamental principles of quantum mechanics.
Here we demonstrate the preparation of a mechanical resonator with an effective mass of 16.2 micrograms in Schr"odinger cat states of motion.
We show control over the size and phase of the superposition and investigate the decoherence dynamics of these states.
arXiv Detail & Related papers (2022-11-01T13:29:44Z) - Macroscopic quantum test with bulk acoustic wave resonators [1.5226766869807382]
We perform the most macroscopic quantum test in a mechanical resonator to date.
The obtained macroscopicity of $mu= 11.3$ is on par with state-of-the-art atom interferometers.
arXiv Detail & Related papers (2022-09-14T13:39:27Z) - Visualizing spinon Fermi surfaces with time-dependent spectroscopy [62.997667081978825]
We propose applying time-dependent photo-emission spectroscopy, an established tool in solid state systems, in cold atom quantum simulators.
We show in exact diagonalization simulations of the one-dimensional $t-J$ model that the spinons start to populate previously unoccupied states in an effective band structure.
The dependence of the spectral function on the time after the pump pulse reveals collective interactions among spinons.
arXiv Detail & Related papers (2021-05-27T18:00:02Z) - Spin Entanglement and Magnetic Competition via Long-range Interactions
in Spinor Quantum Optical Lattices [62.997667081978825]
We study the effects of cavity mediated long range magnetic interactions and optical lattices in ultracold matter.
We find that global interactions modify the underlying magnetic character of the system while introducing competition scenarios.
These allow new alternatives toward the design of robust mechanisms for quantum information purposes.
arXiv Detail & Related papers (2020-11-16T08:03:44Z) - Verification of conditional mechanical squeezing for a mg-scale pendulum
near quantum regimes [0.39102514525861415]
In quantum mechanics, measurement can be used to prepare a quantum state.
We demonstrate conditional mechanical squeezing of a mg-scale suspended mirror near quantum regimes.
arXiv Detail & Related papers (2020-08-25T07:05:32Z) - Topological photon pairs in a superconducting quantum metamaterial [44.62475518267084]
We use an array of superconducting qubits to engineer a nontrivial quantum metamaterial.
By performing microwave spectroscopy of the fabricated array, we experimentally observe the spectrum of elementary excitations.
We find not only the single-photon topological states but also the bands of exotic bound photon pairs arising due to the inherent anharmonicity of qubits.
arXiv Detail & Related papers (2020-06-23T07:04:27Z) - Quantum Hall phase emerging in an array of atoms interacting with
photons [101.18253437732933]
Topological quantum phases underpin many concepts of modern physics.
Here, we reveal that the quantum Hall phase with topological edge states, spectral Landau levels and Hofstadter butterfly can emerge in a simple quantum system.
Such systems, arrays of two-level atoms (qubits) coupled to light being described by the classical Dicke model, have recently been realized in experiments with cold atoms and superconducting qubits.
arXiv Detail & Related papers (2020-03-18T14:56:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.