論文の概要: Machine Learning for Condensed Matter Physics
- arxiv url: http://arxiv.org/abs/2005.14228v3
- Date: Fri, 14 Aug 2020 01:03:43 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-27 06:09:03.844366
- Title: Machine Learning for Condensed Matter Physics
- Title(参考訳): 凝縮物質物理のための機械学習
- Authors: Edwin A. Bedolla-Montiel, Luis Carlos Padierna, Ram\'on
Casta\~neda-Priego
- Abstract要約: 凝縮物質物理学(CMP)は、量子と原子レベルの物質の微視的相互作用を理解することを目的としている。
CMPは、化学、材料科学、統計物理学、高性能コンピューティングなど、多くの重要な科学分野と重なり合っている。
現代の機械学習(ML)技術は、両方の分野の交差点で魅力的な新しい研究領域を生み出した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Condensed Matter Physics (CMP) seeks to understand the microscopic
interactions of matter at the quantum and atomistic levels, and describes how
these interactions result in both mesoscopic and macroscopic properties. CMP
overlaps with many other important branches of science, such as Chemistry,
Materials Science, Statistical Physics, and High-Performance Computing. With
the advancements in modern Machine Learning (ML) technology, a keen interest in
applying these algorithms to further CMP research has created a compelling new
area of research at the intersection of both fields. In this review, we aim to
explore the main areas within CMP, which have successfully applied ML
techniques to further research, such as the description and use of ML schemes
for potential energy surfaces, the characterization of topological phases of
matter in lattice systems, the prediction of phase transitions in off-lattice
and atomistic simulations, the interpretation of ML theories with
physics-inspired frameworks and the enhancement of simulation methods with ML
algorithms. We also discuss in detail the main challenges and drawbacks of
using ML methods on CMP problems, as well as some perspectives for future
developments.
- Abstract(参考訳): 凝縮物質物理学(CMP)は、量子と原子のレベルでの物質の微視的相互作用を理解し、これらの相互作用がメゾスコピックとマクロスコピックの両方の性質をもたらすかを説明する。
CMPは、化学、材料科学、統計物理学、高性能コンピューティングなど、多くの重要な科学分野と重複している。
機械学習(ML)技術の進歩により、これらのアルゴリズムをさらなるCMP研究に適用することへの強い関心が、両方の分野の交差点で魅力的な新しい研究分野を生み出した。
本稿では,CMP におけるML の手法を応用し,ポテンシャルエネルギー面に対する ML スキームの記述と利用,格子系の物質トポロジカル位相のキャラクタリゼーション,非格子・原子シミュレーションにおける相転移の予測,物理に着想を得たフレームワークによる ML 理論の解釈,ML アルゴリズムによるシミュレーション手法の強化など,さらなる研究に成功している分野について検討する。
また,CMP問題におけるML手法の主な課題と欠点,今後の発展への展望についても詳しく論じる。
関連論文リスト
- Machine Learning Applications to Computational Plasma Physics and Reduced-Order Plasma Modeling: A Perspective [0.0]
このパースペクティブは、流体力学における機械学習の進歩を計算プラズマ物理学に転送するためのロードマップを概説することを目的としている。
まず、MLアルゴリズムの様々なカテゴリや、MLの助けを借りて解決できるさまざまなタイプの問題など、MLの基本的な側面について議論する。
次に,計算流体力学におけるMLの使用例について述べる。
論文 参考訳(メタデータ) (2024-09-04T00:35:55Z) - Recent Advances on Machine Learning for Computational Fluid Dynamics: A Survey [51.87875066383221]
本稿では、基本概念、従来の手法、ベンチマークデータセットを紹介し、CFDを改善する上で機械学習が果たす様々な役割について検討する。
我々は,空気力学,燃焼,大気・海洋科学,生物流体,プラズマ,記号回帰,秩序の低減など,CFDにおけるMLの現実的な応用を強調した。
シミュレーションの精度を向上し、計算時間を短縮し、流体力学のより複雑な解析を可能にすることにより、MLはCFD研究を大きく変革する可能性があるという結論を導いた。
論文 参考訳(メタデータ) (2024-08-22T07:33:11Z) - Improving Molecular Modeling with Geometric GNNs: an Empirical Study [56.52346265722167]
本稿では,異なる標準化手法,(2)グラフ作成戦略,(3)補助的なタスクが性能,拡張性,対称性の強制に与える影響に焦点をあてる。
本研究の目的は,分子モデリングタスクに最適なモデリングコンポーネントの選択を研究者に案内することである。
論文 参考訳(メタデータ) (2024-07-11T09:04:12Z) - Advances in machine-learning-based sampling motivated by lattice quantum
chromodynamics [4.539861642583362]
この視点は、格子量子場理論によって動機付けられたMLベースのサンプリングの進歩を概説する。
このアプリケーションのためのMLアルゴリズムの設計は、最大規模のスーパーコンピュータにカスタムMLアーキテクチャをスケールする必要があるなど、重大な課題に直面している。
このアプローチが早期の約束を達成できれば、粒子、核、凝縮物質物理学における第一原理物理学計算への転換ステップとなる。
論文 参考訳(メタデータ) (2023-09-03T12:25:59Z) - Recent Advances and Applications of Machine Learning in Experimental
Solid Mechanics: A Review [0.0]
機械学習(ML)の最近の進歩は、実験的な固体力学の新しい機会を提供する。
このレビューは、MLメソッドの使用に関する貴重な洞察と、固体力学の研究者が実験に組み込むための様々な例を提供することを目的としている。
論文 参考訳(メタデータ) (2023-03-14T06:15:17Z) - Bayesian Active Learning for Scanning Probe Microscopy: from Gaussian
Processes to Hypothesis Learning [0.0]
ベイズ能動学習の基本原理と走査型プローブ顕微鏡(SPM)への応用について述べる。
これらのフレームワークは、先行データの使用、スペクトルデータに符号化された特定の機能の発見、実験中に現れる物理法則の探索を可能にする。
論文 参考訳(メタデータ) (2022-05-30T23:01:41Z) - Accurate Machine Learned Quantum-Mechanical Force Fields for
Biomolecular Simulations [51.68332623405432]
分子動力学(MD)シミュレーションは、化学的および生物学的プロセスに関する原子論的な洞察を可能にする。
近年,MDシミュレーションの代替手段として機械学習力場(MLFF)が出現している。
本研究は、大規模分子シミュレーションのための正確なMLFFを構築するための一般的なアプローチを提案する。
論文 参考訳(メタデータ) (2022-05-17T13:08:28Z) - Quantum Machine Learning for Chemistry and Physics [2.786820702277084]
機械学習(ML)とその従兄弟のディープラーニング(DL)は、物理科学、特に化学のあらゆる分野で前例のない発展をもたらした。
このレビューでは、これらのトピックのサブセットを詳述し、古典的および量子コンピューティングの強化された機械学習アルゴリズムによる貢献を、過去数年間にわたって詳述する。
論文 参考訳(メタデータ) (2021-11-01T11:38:47Z) - Quantum-Classical Hybrid Algorithm for the Simulation of All-Electron
Correlation [58.720142291102135]
本稿では、分子の全電子エネルギーと古典的コンピュータ上の特性を計算できる新しいハイブリッド古典的アルゴリズムを提案する。
本稿では,現在利用可能な量子コンピュータ上で,化学的に関連性のある結果と精度を実現する量子古典ハイブリッドアルゴリズムの能力を実証する。
論文 参考訳(メタデータ) (2021-06-22T18:00:00Z) - Machine Learning Force Fields [54.48599172620472]
機械学習(ML)は、計算化学の多くの進歩を可能にした。
最も有望な応用の1つは、MLベースの力場(FF)の構築である。
本稿では,ML-FFの応用と,それらから得られる化学的知見について概説する。
論文 参考訳(メタデータ) (2020-10-14T13:14:14Z) - Machine Learning in Nano-Scale Biomedical Engineering [77.75587007080894]
ナノスケールバイオメディカルエンジニアリングにおける機械学習の利用に関する既存の研究について概説する。
ML問題として定式化できる主な課題は、3つの主要なカテゴリに分類される。
提示された方法論のそれぞれについて、その原則、応用、制限に特に重点を置いている。
論文 参考訳(メタデータ) (2020-08-05T15:45:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。