論文の概要: Advances in machine-learning-based sampling motivated by lattice quantum
chromodynamics
- arxiv url: http://arxiv.org/abs/2309.01156v1
- Date: Sun, 3 Sep 2023 12:25:59 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-06 21:14:20.759098
- Title: Advances in machine-learning-based sampling motivated by lattice quantum
chromodynamics
- Title(参考訳): 格子量子色力学による機械学習に基づくサンプリングの進歩
- Authors: Kyle Cranmer, Gurtej Kanwar, S\'ebastien Racani\`ere, Danilo J.
Rezende, Phiala E. Shanahan
- Abstract要約: この視点は、格子量子場理論によって動機付けられたMLベースのサンプリングの進歩を概説する。
このアプリケーションのためのMLアルゴリズムの設計は、最大規模のスーパーコンピュータにカスタムMLアーキテクチャをスケールする必要があるなど、重大な課題に直面している。
このアプローチが早期の約束を達成できれば、粒子、核、凝縮物質物理学における第一原理物理学計算への転換ステップとなる。
- 参考スコア(独自算出の注目度): 4.539861642583362
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Sampling from known probability distributions is a ubiquitous task in
computational science, underlying calculations in domains from linguistics to
biology and physics. Generative machine-learning (ML) models have emerged as a
promising tool in this space, building on the success of this approach in
applications such as image, text, and audio generation. Often, however,
generative tasks in scientific domains have unique structures and features --
such as complex symmetries and the requirement of exactness guarantees -- that
present both challenges and opportunities for ML. This Perspective outlines the
advances in ML-based sampling motivated by lattice quantum field theory, in
particular for the theory of quantum chromodynamics. Enabling calculations of
the structure and interactions of matter from our most fundamental
understanding of particle physics, lattice quantum chromodynamics is one of the
main consumers of open-science supercomputing worldwide. The design of ML
algorithms for this application faces profound challenges, including the
necessity of scaling custom ML architectures to the largest supercomputers, but
also promises immense benefits, and is spurring a wave of development in
ML-based sampling more broadly. In lattice field theory, if this approach can
realize its early promise it will be a transformative step towards
first-principles physics calculations in particle, nuclear and condensed matter
physics that are intractable with traditional approaches.
- Abstract(参考訳): 既知の確率分布からのサンプリングは計算科学におけるユビキタスなタスクであり、言語学から生物学、物理学まで分野における基礎的な計算である。
生成機械学習(ML)モデルはこの分野において有望なツールとして登場し、画像、テキスト、オーディオ生成などのアプリケーションにおけるこのアプローチの成功に基づいて構築されている。
しかしながら、科学領域における生成タスクには、複雑な対称性や正確性保証の要件など、ユニークな構造と特徴があり、MLの課題と機会の両方を提示する。
この視点は、格子量子場理論、特に量子色力学の理論に動機付けられたmlに基づくサンプリングの進歩を概説する。
素粒子物理学の最も基本的な理解から物質の構造と相互作用の計算を可能にするため、格子量子色力学は世界中のオープンサイエンススーパーコンピューティングの主要な消費者の1つである。
このアプリケーションのためのMLアルゴリズムの設計は、最大規模のスーパーコンピュータにカスタムMLアーキテクチャをスケールする必要があるなど、重大な課題に直面している。
格子場理論において、もしこの手法が早期の約束を達成できれば、従来のアプローチで難解な粒子、核、凝縮物質物理学における第一原理物理学計算への転換段階となる。
関連論文リスト
- Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
d可変RZゲートとG-dクリフォードゲートを含む量子回路を与えられた場合、学習者は純粋に古典的な推論を行い、その線形特性を効率的に予測できるだろうか?
我々は、d で線形にスケーリングするサンプルの複雑さが、小さな予測誤差を達成するのに十分であり、対応する計算の複雑さは d で指数関数的にスケールすることを証明する。
我々は,予測誤差と計算複雑性をトレードオフできるカーネルベースの学習モデルを考案し,多くの実践的な環境で指数関数からスケーリングへ移行した。
論文 参考訳(メタデータ) (2024-08-22T08:21:28Z) - Quantum Generative Adversarial Networks: Bridging Classical and Quantum
Realms [0.6827423171182153]
GAN(Generative Adversarial Networks)領域における古典的および量子コンピューティングパラダイムの相乗的融合について検討する。
我々の目的は、量子計算要素を従来のGANアーキテクチャにシームレスに統合し、トレーニングプロセスの強化のために新しい経路を開放することである。
この研究は量子化機械学習の最前線に位置し、量子システムの計算能力を活用するための重要な一歩である。
論文 参考訳(メタデータ) (2023-12-15T16:51:36Z) - Programmable Simulations of Molecules and Materials with Reconfigurable
Quantum Processors [0.3320294284424914]
モデルスピンハミルトニアンで表現できる強い相関量子系のシミュレーションフレームワークを導入する。
提案手法は、再構成可能な量子ビットアーキテクチャを利用して、リアルタイムなダイナミクスをプログラム的にシミュレートする。
本稿では, この方法を用いて, 多核遷移金属触媒と2次元磁性材料のキー特性を計算する方法について述べる。
論文 参考訳(メタデータ) (2023-12-04T19:00:01Z) - Symmetry-invariant quantum machine learning force fields [0.0]
我々は、データに着想を得た、広範囲な物理関連対称性の集合を明示的に組み込んだ量子ニューラルネットワークを設計する。
この結果から,分子力場生成は量子機械学習の枠組みを生かして著しく利益を得る可能性が示唆された。
論文 参考訳(メタデータ) (2023-11-19T16:15:53Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
本研究では,高エネルギー物理における量子データ学習の実践的問題への適用性について検討する。
我々は、量子畳み込みニューラルネットワークに基づくアンサッツを用いて、基底状態の量子位相を認識できることを数値的に示す。
これらのベンチマークで示された非自明な学習特性の観察は、高エネルギー物理学における量子データ学習アーキテクチャのさらなる探求の動機となる。
論文 参考訳(メタデータ) (2023-06-29T18:00:01Z) - Scalable Quantum Computation of Highly Excited Eigenstates with Spectral
Transforms [0.76146285961466]
我々はHHLアルゴリズムを用いて、物理的ハミルトニアンの内部固有状態を変動的かつ標的的に生成する。
これは量子コンピュータ上の逆ハミルトニアンの期待値の効率的な計算によって実現される。
本稿では, フォールトトレラント, 短期量子コンピュータにおけるこの方式の実装について詳述する。
論文 参考訳(メタデータ) (2023-02-13T19:01:02Z) - Explainable Quantum Machine Learning [0.7046417074932257]
人工知能(AI)や特に機械学習(ML)の手法は、これまで以上に複雑になってきている。
並行して、量子機械学習(QML)が登場し、量子コンピューティングハードウェアの改善が進行中である。
論文 参考訳(メタデータ) (2023-01-22T15:17:12Z) - The Quantum Path Kernel: a Generalized Quantum Neural Tangent Kernel for
Deep Quantum Machine Learning [52.77024349608834]
古典的なディープニューラルネットワークの量子アナログを構築することは、量子コンピューティングにおける根本的な課題である。
鍵となる問題は、古典的なディープラーニングの本質的な非線形性にどのように対処するかである。
我々は、深層機械学習のこれらの側面を複製できる量子機械学習の定式化であるQuantum Path Kernelを紹介する。
論文 参考訳(メタデータ) (2022-12-22T16:06:24Z) - Recent Advances for Quantum Neural Networks in Generative Learning [98.88205308106778]
量子生成学習モデル(QGLM)は、古典的な学習モデルを上回る可能性がある。
機械学習の観点からQGLMの現状を概観する。
従来の機械学習タスクと量子物理学の両方におけるQGLMの潜在的な応用について論じる。
論文 参考訳(メタデータ) (2022-06-07T07:32:57Z) - Theory of Quantum Generative Learning Models with Maximum Mean
Discrepancy [67.02951777522547]
量子回路ボルンマシン(QCBM)と量子生成逆ネットワーク(QGAN)の学習可能性について検討する。
まず、QCBMの一般化能力を解析し、量子デバイスがターゲット分布に直接アクセスできる際の優位性を同定する。
次に、QGANの一般化誤差境界が、採用されるAnsatz、クォーディットの数、入力状態に依存することを示す。
論文 参考訳(メタデータ) (2022-05-10T08:05:59Z) - Quantum-tailored machine-learning characterization of a superconducting
qubit [50.591267188664666]
我々は,量子デバイスのダイナミクスを特徴付ける手法を開発し,デバイスパラメータを学習する。
このアプローチは、数値的に生成された実験データに基づいてトレーニングされた物理に依存しないリカレントニューラルネットワークより優れている。
このデモンストレーションは、ドメイン知識を活用することで、この特徴付けタスクの正確性と効率が向上することを示す。
論文 参考訳(メタデータ) (2021-06-24T15:58:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。