論文の概要: Machine Learning Applications to Computational Plasma Physics and Reduced-Order Plasma Modeling: A Perspective
- arxiv url: http://arxiv.org/abs/2409.02349v1
- Date: Wed, 4 Sep 2024 00:35:55 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-05 20:41:08.440363
- Title: Machine Learning Applications to Computational Plasma Physics and Reduced-Order Plasma Modeling: A Perspective
- Title(参考訳): 計算機プラズマ物理と低次プラズマモデリングへの機械学習の応用
- Authors: Farbod Faraji, Maryam Reza,
- Abstract要約: このパースペクティブは、流体力学における機械学習の進歩を計算プラズマ物理学に転送するためのロードマップを概説することを目的としている。
まず、MLアルゴリズムの様々なカテゴリや、MLの助けを借りて解決できるさまざまなタイプの問題など、MLの基本的な側面について議論する。
次に,計算流体力学におけるMLの使用例について述べる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Machine learning (ML) provides a broad spectrum of tools and architectures that enable the transformation of data from simulations and experiments into useful and explainable science, thereby augmenting domain knowledge. Furthermore, ML-enhanced numerical modelling can revamp scientific computing for real-world complex engineering systems, creating unique opportunities to examine the operation of the technologies in detail and automate their optimization and control. In recent years, ML applications have seen significant growth across various scientific domains, particularly in fluid mechanics, where ML has shown great promise in enhancing computational modeling of fluid flows. In contrast, ML applications in numerical plasma physics research remain relatively limited in scope and extent. Despite this, the close relationship between fluid mechanics and plasma physics presents a valuable opportunity to create a roadmap for transferring ML advances in fluid flow modeling to computational plasma physics. This Perspective aims to outline such a roadmap. We begin by discussing some general fundamental aspects of ML, including the various categories of ML algorithms and the different types of problems that can be solved with the help of ML. With regard to each problem type, we then present specific examples from the use of ML in computational fluid dynamics, reviewing several insightful prior efforts. We also review recent ML applications in plasma physics for each problem type. The paper discusses promising future directions and development pathways for ML in plasma modelling within the different application areas. Additionally, we point out prominent challenges that must be addressed to realize ML's full potential in computational plasma physics, including the need for cost-effective high-fidelity simulation tools for extensive data generation.
- Abstract(参考訳): 機械学習(ML)は、シミュレーションや実験から有用で説明可能な科学へのデータ変換を可能にする、幅広いツールとアーキテクチャを提供する。
さらに、MLの強化された数値モデリングは、実世界の複雑なエンジニアリングシステムのための科学計算を改良し、その技術を詳細に検証し、最適化と制御を自動化するユニークな機会を生み出すことができる。
近年、MLの応用は様々な科学分野、特に流体力学において顕著な成長を遂げている。
対照的に、数値プラズマ物理学の研究におけるMLの応用は、範囲と範囲において比較的限られている。
これにもかかわらず、流体力学とプラズマ物理学の密接な関係は、流体流動モデリングにおけるMLの進歩を計算プラズマ物理学に転送するためのロードマップを作成する貴重な機会となる。
このパースペクティブは、このようなロードマップを概観することを目指している。
まず、MLアルゴリズムの様々なカテゴリや、MLの助けを借りて解決できるさまざまなタイプの問題など、MLの基本的な側面について議論する。
次に,各問題の種類について,計算流体力学におけるMLの使用例について述べる。
また,各問題種別におけるプラズマ物理学における最近のML応用についても概説する。
本稿では,様々な応用領域におけるプラズマモデリングにおけるMLの今後の方向性と開発経路について論じる。
さらに,計算プラズマ物理学におけるMLの潜在能力を最大限に実現するためには,費用対効果の高い高忠実度シミュレーションツールの必要性など,課題を指摘する。
関連論文リスト
- Physics-Informed Machine Learning for Smart Additive Manufacturing [2.3091320511105353]
本稿では、ニューラルネットワークと物理法則を統合した物理インフォームド・機械学習(PIML)モデルの開発に焦点をあて、レーザー金属堆積(LMD)におけるケーススタディによるモデル精度、透明性、一般化について述べる。
論文 参考訳(メタデータ) (2024-07-15T14:40:24Z) - Efficient Multimodal Large Language Models: A Survey [60.7614299984182]
MLLM(Multimodal Large Language Models)は、視覚的質問応答、視覚的理解、推論などのタスクにおいて顕著な性能を示す。
モデルサイズと高いトレーニングと推論コストが、MLLMのアカデミックや産業への応用を妨げている。
本調査は,効率的なMLLMの現状を包括的かつ体系的に概観するものである。
論文 参考訳(メタデータ) (2024-05-17T12:37:10Z) - Physics-Informed Machine Learning for Modeling and Control of Dynamical
Systems [0.0]
物理インフォームド機械学習(英: Physics-informed machine learning、PIML)は、機械学習(ML)アルゴリズムを物理的制約と体系的に統合する手法とツールのセットである。
PIMLの基本前提は、MLと物理の統合により、より効率的で、物理的に一貫性があり、データ効率のよいモデルが得られることである。
本稿では,動的システムモデリングと制御のためのPIMLの最近の進歩について,チュートリアルのような概要を提供する。
論文 参考訳(メタデータ) (2023-06-24T05:24:48Z) - Learning Controllable Adaptive Simulation for Multi-resolution Physics [86.8993558124143]
完全深層学習に基づくサロゲートモデルとして,LAMP(Learning Controllable Adaptive Simulation for Multi- resolution Physics)を導入した。
LAMPは、前方進化を学習するためのグラフニューラルネットワーク(GNN)と、空間的洗練と粗大化のポリシーを学ぶためのGNNベースのアクター批判で構成されている。
我々は,LAMPが最先端のディープラーニングサロゲートモデルより優れており,長期予測誤差を改善するために,適応的なトレードオフ計算が可能であることを実証した。
論文 参考訳(メタデータ) (2023-05-01T23:20:27Z) - Challenges and opportunities for machine learning in multiscale
computational modeling [0.0]
複雑なマルチスケールシステムの解法は、解空間の高次元性のために計算的に一様である。
機械学習(ML)は、従来の数値手法のサロゲートとして機能し、加速し、拡張できる有望なソリューションとして登場した。
本稿では、複雑なマルチスケールモデリングとシミュレーションにMLを使う機会と課題について述べる。
論文 参考訳(メタデータ) (2023-03-22T02:04:39Z) - Deep learning applied to computational mechanics: A comprehensive
review, state of the art, and the classics [77.34726150561087]
人工知能,特に深層学習(DL)の最近の進歩を概観する。
ハイブリッドおよび純粋機械学習(ML)の手法について論じる。
AIの歴史と限界は、特に古典の誤解や誤解を指摘し、議論され、議論される。
論文 参考訳(メタデータ) (2022-12-18T02:03:00Z) - Symmetry Group Equivariant Architectures for Physics [52.784926970374556]
機械学習の分野では、対称性に対する認識が目覚ましいパフォーマンスのブレークスルーを引き起こしている。
物理学のコミュニティと、より広い機械学習のコミュニティの両方に、理解すべきことがたくさんある、と私たちは主張する。
論文 参考訳(メタデータ) (2022-03-11T18:27:04Z) - Theory-Guided Machine Learning for Process Simulation of Advanced
Composites [0.0]
Theory-Guided Machine Learning (TGML)は、物理法則をMLアルゴリズムに統合することを目指している。
本稿では, 複合材料の加工過程における熱管理に関する3つのケーススタディについて述べる。
論文 参考訳(メタデータ) (2021-03-30T00:49:40Z) - Machine Learning Force Fields [54.48599172620472]
機械学習(ML)は、計算化学の多くの進歩を可能にした。
最も有望な応用の1つは、MLベースの力場(FF)の構築である。
本稿では,ML-FFの応用と,それらから得られる化学的知見について概説する。
論文 参考訳(メタデータ) (2020-10-14T13:14:14Z) - Machine Learning in Nano-Scale Biomedical Engineering [77.75587007080894]
ナノスケールバイオメディカルエンジニアリングにおける機械学習の利用に関する既存の研究について概説する。
ML問題として定式化できる主な課題は、3つの主要なカテゴリに分類される。
提示された方法論のそれぞれについて、その原則、応用、制限に特に重点を置いている。
論文 参考訳(メタデータ) (2020-08-05T15:45:54Z) - Machine Learning for Condensed Matter Physics [0.0]
凝縮物質物理学(CMP)は、量子と原子レベルの物質の微視的相互作用を理解することを目的としている。
CMPは、化学、材料科学、統計物理学、高性能コンピューティングなど、多くの重要な科学分野と重なり合っている。
現代の機械学習(ML)技術は、両方の分野の交差点で魅力的な新しい研究領域を生み出した。
論文 参考訳(メタデータ) (2020-05-28T18:44:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。