Applying support vector data description for fraud detection
- URL: http://arxiv.org/abs/2006.00618v1
- Date: Sun, 31 May 2020 21:31:32 GMT
- Title: Applying support vector data description for fraud detection
- Authors: Mohamad Khedmati, Masoud Erfani, Mohammad GhasemiGol
- Abstract summary: One of the main challenges in fraud detection is acquiring fraud samples which is a complex and challenging task.
In order to deal with this challenge, we apply one-class classification methods such as SVDD which does not need the fraud samples for training.
Also, we present our algorithm REDBSCAN which is an extension of DBSCAN to reduce the number of samples and select those that keep the shape of data.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Fraud detection is an important topic that applies to various enterprises
such as banking and financial sectors, insurance, government agencies, law
enforcement, and more. Fraud attempts have been risen remarkably in current
years, shaping fraud detection an essential topic for research. One of the main
challenges in fraud detection is acquiring fraud samples which is a complex and
challenging task. In order to deal with this challenge, we apply one-class
classification methods such as SVDD which does not need the fraud samples for
training. Also, we present our algorithm REDBSCAN which is an extension of
DBSCAN to reduce the number of samples and select those that keep the shape of
data. The results obtained by the implementation of the proposed method
indicated that the fraud detection process was improved in both performance and
speed.
Related papers
- Step-by-Step Reasoning for Math Problems via Twisted Sequential Monte Carlo [55.452453947359736]
We introduce a novel verification method based on Twisted Sequential Monte Carlo (TSMC)
We apply TSMC to Large Language Models by estimating the expected future rewards at partial solutions.
This approach results in a more straightforward training target that eliminates the need for step-wise human annotations.
arXiv Detail & Related papers (2024-10-02T18:17:54Z) - Credit Card Fraud Detection with Subspace Learning-based One-Class
Classification [18.094622095967328]
One-Class Classification (OCC) algorithms excel in handling imbalanced data distributions.
These algorithms integrate subspace learning into the data description.
These algorithms transform the data into a lower-dimensional subspace optimized for OCC.
arXiv Detail & Related papers (2023-09-26T12:26:28Z) - Transaction Fraud Detection via an Adaptive Graph Neural Network [64.9428588496749]
We propose an Adaptive Sampling and Aggregation-based Graph Neural Network (ASA-GNN) that learns discriminative representations to improve the performance of transaction fraud detection.
A neighbor sampling strategy is performed to filter noisy nodes and supplement information for fraudulent nodes.
Experiments on three real financial datasets demonstrate that the proposed method ASA-GNN outperforms state-of-the-art ones.
arXiv Detail & Related papers (2023-07-11T07:48:39Z) - Weakly Supervised Anomaly Detection: A Survey [75.26180038443462]
Anomaly detection (AD) is a crucial task in machine learning with various applications.
We present the first comprehensive survey of weakly supervised anomaly detection (WSAD) methods.
For each setting, we provide formal definitions, key algorithms, and potential future directions.
arXiv Detail & Related papers (2023-02-09T10:27:21Z) - Fraud Dataset Benchmark and Applications [25.184342958800293]
Fraud dataset Benchmark (FDB) is a compilation of publicly available datasets catered to fraud detection.
FDB comprises variety of fraud related tasks, ranging from identifying fraudulent card-not-present transactions, detecting bot attacks, classifying malicious URLs, estimating risk of loan default to content moderation.
Python based library for FDB provides a consistent API for data loading with standardized training and testing splits.
arXiv Detail & Related papers (2022-08-30T17:35:39Z) - Challenges and Complexities in Machine Learning based Credit Card Fraud
Detection [0.0]
Volume of transactions, uniqueness of frauds and ingenuity of the fraudster are main challenges in detecting frauds.
The advent of machine learning, artificial intelligence and big data has opened up new tools in the fight against frauds.
However, the developments in fraud detection algorithms has been challenging and slow due to the massively unbalanced nature of fraud data.
arXiv Detail & Related papers (2022-08-20T07:53:51Z) - On some studies of Fraud Detection Pipeline and related issues from the
scope of Ensemble Learning and Graph-based Learning [0.5820960526832067]
The UK anti-fraud charity Fraud Advisory Panel estimates business costs of fraud at 144 billion.
Building an efficient fraud detection system is challenging due to many difficult problems, e.g.imbalanced data, computing costs, etc.
arXiv Detail & Related papers (2022-05-10T02:13:58Z) - Application of Deep Reinforcement Learning to Payment Fraud [0.0]
A typical fraud detection system employs standard supervised learning methods where the focus is on maximizing the fraud recall rate.
We argue that such a formulation can lead to suboptimal solutions.
We formulate fraud detection as a sequential decision-making problem by including the utility within the model in the form of the reward function.
arXiv Detail & Related papers (2021-12-08T11:30:53Z) - Deep Fraud Detection on Non-attributed Graph [61.636677596161235]
Graph Neural Networks (GNNs) have shown solid performance on fraud detection.
labeled data is scarce in large-scale industrial problems, especially for fraud detection.
We propose a novel graph pre-training strategy to leverage more unlabeled data.
arXiv Detail & Related papers (2021-10-04T03:42:09Z) - Relational Graph Neural Networks for Fraud Detection in a Super-App
environment [53.561797148529664]
We propose a framework of relational graph convolutional networks methods for fraudulent behaviour prevention in the financial services of a Super-App.
We use an interpretability algorithm for graph neural networks to determine the most important relations to the classification task of the users.
Our results show that there is an added value when considering models that take advantage of the alternative data of the Super-App and the interactions found in their high connectivity.
arXiv Detail & Related papers (2021-07-29T00:02:06Z) - DFraud3- Multi-Component Fraud Detection freeof Cold-start [50.779498955162644]
The Cold-start is a significant problem referring to the failure of a detection system to recognize the authenticity of a new user.
In this paper, we model a review system as a Heterogeneous InformationNetwork (HIN) which enables a unique representation to every component.
HIN with graph induction helps to address the camouflage issue (fraudsterswith genuine reviews) which has shown to be more severe when it is coupled with cold-start, i.e., new fraudsters with genuine first reviews.
arXiv Detail & Related papers (2020-06-10T08:20:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.