論文の概要: Compressed variational quantum eigensolver for the Fermi-Hubbard model
- arxiv url: http://arxiv.org/abs/2006.01179v2
- Date: Thu, 18 Jun 2020 21:20:06 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-17 11:20:57.698432
- Title: Compressed variational quantum eigensolver for the Fermi-Hubbard model
- Title(参考訳): Fermi-Hubbardモデルに対する圧縮変分量子固有解法
- Authors: Ashley Montanaro and Stasja Stanisic
- Abstract要約: Fermi-Hubbardモデル(英語版)は量子コンピュータによって解決されるもっともらしいターゲットである。
ここでは、Hubbardモデルの最初の非自明な部分ケースを圧縮する簡単な方法を用いる。
この手法を超伝導量子ハードウェアプラットフォームに実装する。
- 参考スコア(独自算出の注目度): 0.05076419064097732
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The Fermi-Hubbard model is a plausible target to be solved by a quantum
computer using the variational quantum eigensolver algorithm. However, problem
sizes beyond the reach of classical exact diagonalisation are also beyond the
reach of current quantum computing hardware. Here we use a simple method which
compresses the first nontrivial subcase of the Hubbard model -- with one
spin-up and one spin-down fermion -- enabling larger instances to be addressed
using current quantum computing hardware. We implement this method on a
superconducting quantum hardware platform for the case of the $2 \times 1$
Hubbard model, including error-mitigation techniques, and show that the ground
state is found with relatively high accuracy.
- Abstract(参考訳): フェルミ・ハバードモデル(fermi-hubbard model)は、変分量子固有解法を用いて量子コンピュータによって解くことのできる、妥当な対象である。
しかし、古典的な正確な対角化の範囲を超える問題のサイズは、現在の量子コンピューティングハードウェアの範囲を超えている。
ここでは、ハッバードモデルの最初の非自明な部分ケース -- 1つのスピンアップと1つのスピンダウンフェルミオン -- を圧縮して、より大きなインスタンスを現在の量子コンピューティングハードウェアを使って対処するシンプルな方法を使用する。
本手法は, 2 ドルのハバードモデルの場合の超伝導量子ハードウェアプラットフォーム上に実装され, 誤差軽減技術を含め, 比較的高い精度で基底状態が見つかることを示す。
関連論文リスト
- Optimizing random local Hamiltonians by dissipation [44.99833362998488]
簡単な量子ギブスサンプリングアルゴリズムが最適値の$Omega(frac1k)$-fraction近似を達成することを証明した。
この結果から, 局所スピンおよびフェルミオンモデルに対する低エネルギー状態の発見は量子的に容易であるが, 古典的には非自明であることが示唆された。
論文 参考訳(メタデータ) (2024-11-04T20:21:16Z) - Realizing fracton order from long-range quantum entanglement in programmable Rydberg atom arrays [45.19832622389592]
量子情報のストアングには、量子デコヒーレンスと戦う必要があるため、時間の経過とともに情報が失われる。
誤り耐性の量子メモリを実現するために、局所的なノイズ源が別の状態に変化できないように設計された退化状態の量子重ね合わせに情報を格納したい。
このプラットフォームは、真のエラー耐性量子メモリの目標に向けて、特定の種類のエラーを検出し、修正することを可能にする。
論文 参考訳(メタデータ) (2024-07-08T12:46:08Z) - Parallel Quantum Computing Simulations via Quantum Accelerator Platform Virtualization [44.99833362998488]
本稿では,量子回路実行の並列化モデルを提案する。
このモデルはバックエンドに依存しない機能を利用することができ、任意のターゲットバックエンド上で並列量子回路の実行を可能にする。
論文 参考訳(メタデータ) (2024-06-05T17:16:07Z) - Utilizing Quantum Processor for the Analysis of Strongly Correlated Materials [34.63047229430798]
本研究では,従来の量子クラスター法を量子回路モデルに適用することにより,強い相関関係を解析するための体系的アプローチを提案する。
我々は、クラスタのグリーン関数を計算するためのより簡潔な公式を開発し、複雑な演算ではなく、量子回路上の実数計算のみを必要とする。
論文 参考訳(メタデータ) (2024-04-03T06:53:48Z) - Schr\"odinger-Heisenberg Variational Quantum Algorithms [1.9887498823918806]
最近のブレークスルーにより、数十から数百キュービットの中間スケールの量子コンピューティングが可能になった。
古典的コンピュータを超えるために必要な極めて高い精度は、回路深度に重大な需要をもたらす。
本稿では,この問題を解決するために,シュリンガー・ハイゼンベルク変分量子アルゴリズムのパラダイムを提案する。
論文 参考訳(メタデータ) (2021-12-15T04:53:01Z) - Observing ground-state properties of the Fermi-Hubbard model using a
scalable algorithm on a quantum computer [0.029316801942271296]
我々は,Fermi-Hubbardモデルの中規模インスタンスの重要な定性的特徴を再現できるパラメータがほとんどない,効率的で低深さな変分量子アルゴリズムを示す。
超伝導量子プロセッサ上で16量子ビット上の1x8と2x4のインスタンスに対処する。
金属絶縁体遷移とフリーデル振動の1次元における開始と1次元および2次元における反強磁性秩序を観察する。
論文 参考訳(メタデータ) (2021-12-03T17:14:20Z) - Model-Independent Error Mitigation in Parametric Quantum Circuits and
Depolarizing Projection of Quantum Noise [1.5162649964542718]
与えられたハミルトニアンの基底状態と低い励起を見つけることは、物理学の多くの分野において最も重要な問題の一つである。
Noisy Intermediate-Scale Quantum (NISQ) デバイス上の量子コンピューティングは、そのような計算を効率的に実行する可能性を提供する。
現在の量子デバイスは、今でも固有の量子ノイズに悩まされている。
論文 参考訳(メタデータ) (2021-11-30T16:08:01Z) - Variational Quantum Eigensolver for SU($N$) Fermions [0.0]
変分量子アルゴリズムは、ノイズの多い中間スケール量子コンピュータのパワーを活用することを目的としている。
変分量子固有解法を$N$成分フェルミオンの基底状態特性の研究に応用する。
提案手法は,多体系の電流ベース量子シミュレータの基礎を定式化したものである。
論文 参考訳(メタデータ) (2021-06-29T16:39:30Z) - Hardware-Efficient, Fault-Tolerant Quantum Computation with Rydberg
Atoms [55.41644538483948]
我々は中性原子量子コンピュータにおいてエラー源の完全な特徴付けを行う。
計算部分空間外の状態への原子量子ビットの崩壊に伴う最も重要なエラーに対処する,新しい,明らかに効率的な手法を開発した。
我々のプロトコルは、アルカリ原子とアルカリ原子の両方にエンコードされた量子ビットを持つ最先端の中性原子プラットフォームを用いて、近い将来に実装できる。
論文 参考訳(メタデータ) (2021-05-27T23:29:53Z) - Simulating a ring-like Hubbard system with a quantum computer [0.0]
量子多体問題を解くために、現在の量子コンピューティングハードウェアを使用するワークフローを開発する。
本研究では, ホッピング振幅が変化するにつれて, 生成物状態から内在的に相互作用する基底状態への遷移を示す4サイトハバード環について検討した。
我々は、この遷移を見つけ、IBM量子コンピュータ上で実行される変分量子アルゴリズムを用いて、高精度な定量精度で基底状態エネルギーを解く。
論文 参考訳(メタデータ) (2021-04-13T18:08:09Z) - Electronic structure with direct diagonalization on a D-Wave quantum
annealer [62.997667081978825]
本研究は、D-Wave 2000Q量子アニール上の分子電子ハミルトニアン固有値-固有ベクトル問題を解くために、一般量子アニール固有解法(QAE)アルゴリズムを実装した。
そこで本研究では,D-Waveハードウェアを用いた各種分子系における基底および電子励起状態の取得について述べる。
論文 参考訳(メタデータ) (2020-09-02T22:46:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。