論文の概要: Interpretation of ResNet by Visualization of Preferred Stimulus in
Receptive Fields
- arxiv url: http://arxiv.org/abs/2006.01645v2
- Date: Thu, 9 Jul 2020 11:26:17 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-26 00:37:15.660995
- Title: Interpretation of ResNet by Visualization of Preferred Stimulus in
Receptive Fields
- Title(参考訳): 受容野における好ましい刺激の可視化によるresnetの解釈
- Authors: Genta Kobayashi and Hayaru Shouno
- Abstract要約: ImageNetの分類タスクにおけるResNetの受容領域について検討する。
ResNetは配向選択的ニューロンと二重対立色ニューロンを持つ。
さらに,ResNetの第1層における不活性ニューロンが分類タスクに影響を及ぼす可能性が示唆された。
- 参考スコア(独自算出の注目度): 2.28438857884398
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: One of the methods used in image recognition is the Deep Convolutional Neural
Network (DCNN). DCNN is a model in which the expressive power of features is
greatly improved by deepening the hidden layer of CNN. The architecture of CNNs
is determined based on a model of the visual cortex of mammals. There is a
model called Residual Network (ResNet) that has a skip connection. ResNet is an
advanced model in terms of the learning method, but it has not been interpreted
from a biological viewpoint. In this research, we investigate the receptive
fields of a ResNet on the classification task in ImageNet. We find that ResNet
has orientation selective neurons and double opponent color neurons. In
addition, we suggest that some inactive neurons in the first layer of ResNet
affect the classification task.
- Abstract(参考訳): 画像認識で使用される手法の1つはディープ畳み込みニューラルネットワーク(DCNN)である。
DCNNはCNNの隠蔽層を深くすることで特徴の表現力を大幅に改善するモデルである。
CNNのアーキテクチャは哺乳類の視覚野のモデルに基づいて決定される。
Residual Network(ResNet)と呼ばれるモデルがあり、スキップ接続がある。
ResNetは学習法の観点からは高度なモデルであるが,生物学的観点からは解釈されていない。
本研究では,ImageNetの分類タスクにおけるResNetの受容領域について検討する。
ResNetは配向選択的ニューロンと二重反対色ニューロンを持つ。
さらに、ResNetの第1層における不活性ニューロンが分類タスクに影響を与えることを示唆する。
関連論文リスト
- CNN2GNN: How to Bridge CNN with GNN [59.42117676779735]
蒸留によりCNNとGNNを統一する新しいCNN2GNNフレームワークを提案する。
Mini-ImageNetにおける蒸留ブースターの2層GNNの性能は、ResNet152のような数十層を含むCNNよりもはるかに高い。
論文 参考訳(メタデータ) (2024-04-23T08:19:08Z) - Graph Neural Networks for Learning Equivariant Representations of Neural Networks [55.04145324152541]
本稿では,ニューラルネットワークをパラメータの計算グラフとして表現することを提案する。
我々のアプローチは、ニューラルネットワークグラフを多種多様なアーキテクチャでエンコードする単一モデルを可能にする。
本稿では,暗黙的ニューラル表現の分類や編集など,幅広いタスクにおける本手法の有効性を示す。
論文 参考訳(メタデータ) (2024-03-18T18:01:01Z) - Convolutional Neural Networks Exploiting Attributes of Biological
Neurons [7.3517426088986815]
畳み込みニューラルネットワーク(CNN)のようなディープニューラルネットワークは、最前線として登場し、しばしば人間の能力を上回っている。
ここでは,生物ニューロンの原理をCNNの特定の層に統合する。
我々は,CNNの入力として使用する画像の特徴を抽出し,訓練効率の向上と精度の向上を期待する。
論文 参考訳(メタデータ) (2023-11-14T16:58:18Z) - Deep Neural Networks as Complex Networks [1.704936863091649]
我々は、重み付きグラフとしてディープニューラルネットワーク(DNN)を表現するために複雑ネットワーク理論を用いる。
我々は、DNNを動的システムとして研究するためのメトリクスを導入し、その粒度は、重みから神経細胞を含む層まで様々である。
我々の測定値が低性能ネットワークと高パフォーマンスネットワークを区別していることが示される。
論文 参考訳(メタデータ) (2022-09-12T16:26:04Z) - Neural Capacitance: A New Perspective of Neural Network Selection via
Edge Dynamics [85.31710759801705]
現在の実践は、性能予測のためのモデルトレーニングにおいて高価な計算コストを必要とする。
本稿では,学習中のシナプス接続(エッジ)上の制御ダイナミクスを解析し,ニューラルネットワーク選択のための新しいフレームワークを提案する。
我々のフレームワークは、ニューラルネットワークトレーニング中のバックプロパゲーションがシナプス接続の動的進化と等価であるという事実に基づいて構築されている。
論文 参考訳(メタデータ) (2022-01-11T20:53:15Z) - PCACE: A Statistical Approach to Ranking Neurons for CNN
Interpretability [1.0742675209112622]
ネットワークのどの畳み込み層にも隠れたニューロンをランク付けするための新しい統計手法を提案する。
街路画像を用いた大気汚染予測への本手法の実際の応用について述べる。
論文 参考訳(メタデータ) (2021-12-31T17:54:57Z) - BioLCNet: Reward-modulated Locally Connected Spiking Neural Networks [0.6193838300896449]
本稿では,スパイクタイピング依存型可塑性(STDP)と,その報酬変調型(R-STDP)学習規則を用いて訓練したスパイクニューラルネットワーク(SNN)を提案する。
ネットワークは、レートコードされた入力層と、ローカルに接続された隠れ層とデコード出力層から構成される。
我々は,MNISTデータセットを用いて,画像分類精度と報奨システムのロバスト性を評価した。
論文 参考訳(メタデータ) (2021-09-12T15:28:48Z) - The Mind's Eye: Visualizing Class-Agnostic Features of CNNs [92.39082696657874]
本稿では,特定のレイヤの最も情報性の高い特徴を表現した対応する画像を作成することにより,画像の集合を視覚的に解釈する手法を提案する。
本手法では, 生成ネットワークを必要とせず, 元のモデルに変更を加えることなく, デュアルオブジェクトのアクティベーションと距離損失を利用する。
論文 参考訳(メタデータ) (2021-01-29T07:46:39Z) - Modeling from Features: a Mean-field Framework for Over-parameterized
Deep Neural Networks [54.27962244835622]
本稿では、オーバーパラメータ化ディープニューラルネットワーク(DNN)のための新しい平均場フレームワークを提案する。
このフレームワークでは、DNNは連続的な極限におけるその特徴に対する確率測度と関数によって表現される。
本稿では、標準DNNとResidual Network(Res-Net)アーキテクチャを通してフレームワークを説明する。
論文 参考訳(メタデータ) (2020-07-03T01:37:16Z) - DRU-net: An Efficient Deep Convolutional Neural Network for Medical
Image Segmentation [2.3574651879602215]
残留ネットワーク(ResNet)と密結合ネットワーク(DenseNet)は、ディープ畳み込みニューラルネットワーク(DCNN)のトレーニング効率と性能を大幅に改善した。
両ネットワークの利点を考慮した効率的なネットワークアーキテクチャを提案する。
論文 参考訳(メタデータ) (2020-04-28T12:16:24Z) - Non-linear Neurons with Human-like Apical Dendrite Activations [81.18416067005538]
XOR論理関数を100%精度で学習し, 標準的なニューロンに後続のアピーカルデンドライト活性化(ADA)が認められた。
コンピュータビジョン,信号処理,自然言語処理の6つのベンチマークデータセットについて実験を行った。
論文 参考訳(メタデータ) (2020-02-02T21:09:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。