Noise robustness and experimental demonstration of a quantum generative
adversarial network for continuous distributions
- URL: http://arxiv.org/abs/2006.01976v2
- Date: Mon, 29 Mar 2021 18:45:35 GMT
- Title: Noise robustness and experimental demonstration of a quantum generative
adversarial network for continuous distributions
- Authors: Abhinav Anand, Jonathan Romero, Matthias Degroote and Al\'an
Aspuru-Guzik
- Abstract summary: We numerically simulate the noisy hybrid quantum generative adversarial networks (HQGANs) to learn continuous probability distributions.
We also investigate the effect of different parameters on the training time to reduce the computational scaling of the algorithm.
Our results pave the way for experimental exploration of different quantum machine learning algorithms on noisy intermediate scale quantum devices.
- Score: 0.5249805590164901
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The potential advantage of machine learning in quantum computers is a topic
of intense discussion in the literature. Theoretical, numerical and
experimental explorations will most likely be required to understand its power.
There has been different algorithms proposed to exploit the probabilistic
nature of variational quantum circuits for generative modelling. In this paper,
we employ a hybrid architecture for quantum generative adversarial networks
(QGANs) and study their robustness in the presence of noise. We devise a simple
way of adding different types of noise to the quantum generator circuit, and
numerically simulate the noisy hybrid quantum generative adversarial networks
(HQGANs) to learn continuous probability distributions, and show that the
performance of HQGANs remain unaffected. We also investigate the effect of
different parameters on the training time to reduce the computational scaling
of the algorithm and simplify its deployment on a quantum computer. We then
perform the training on Rigetti's Aspen-4-2Q-A quantum processing unit, and
present the results from the training. Our results pave the way for
experimental exploration of different quantum machine learning algorithms on
noisy intermediate scale quantum devices.
Related papers
- Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - Diffusion-Inspired Quantum Noise Mitigation in Parameterized Quantum Circuits [10.073911279652918]
We study the relationship between the quantum noise and the diffusion model.
We propose a novel diffusion-inspired learning approach to mitigate the quantum noise in the PQCs.
arXiv Detail & Related papers (2024-06-02T19:35:38Z) - QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEA is an in-time sparse exploration for noise-adaptive quantum circuits.
It aims to achieve two key objectives: (1) implicit circuits capacity during training and (2) noise robustness.
Our method establishes state-of-the-art results with only half the number of quantum gates and 2x time saving of circuit executions.
arXiv Detail & Related papers (2024-01-10T22:33:00Z) - Stabilization and Dissipative Information Transfer of a Superconducting
Kerr-Cat Qubit [0.0]
We study the dissipative information transfer to a qubit model called Cat-Qubit.
This model is especially important for the dissipative-based version of the binary quantum classification.
Cat-Qubit architecture has the potential to easily implement activation-like functions in artificial neural networks.
arXiv Detail & Related papers (2023-07-23T11:28:52Z) - Synergic quantum generative machine learning [0.0]
Proposal depends on collaboration between the generators and discriminator, thus, we call it quantum synergic generative learning.
We present numerical evidence that the synergic approach, in some cases, compares favorably to recently proposed quantum generative adversarial learning.
In addition to the results obtained with quantum simulators, we also present experimental results obtained with an actual programmable quantum computer.
arXiv Detail & Related papers (2021-12-25T16:39:33Z) - Pulse-level noisy quantum circuits with QuTiP [53.356579534933765]
We introduce new tools in qutip-qip, QuTiP's quantum information processing package.
These tools simulate quantum circuits at the pulse level, leveraging QuTiP's quantum dynamics solvers and control optimization features.
We show how quantum circuits can be compiled on simulated processors, with control pulses acting on a target Hamiltonian.
arXiv Detail & Related papers (2021-05-20T17:06:52Z) - Entangling Quantum Generative Adversarial Networks [53.25397072813582]
We propose a new type of architecture for quantum generative adversarial networks (entangling quantum GAN, EQ-GAN)
We show that EQ-GAN has additional robustness against coherent errors and demonstrate the effectiveness of EQ-GAN experimentally in a Google Sycamore superconducting quantum processor.
arXiv Detail & Related papers (2021-04-30T20:38:41Z) - Variational learning for quantum artificial neural networks [0.0]
We first review a series of recent works describing the implementation of artificial neurons and feed-forward neural networks on quantum processors.
We then present an original realization of efficient individual quantum nodes based on variational unsampling protocols.
While keeping full compatibility with the overall memory-efficient feed-forward architecture, our constructions effectively reduce the quantum circuit depth required to determine the activation probability of single neurons.
arXiv Detail & Related papers (2021-03-03T16:10:15Z) - Information Scrambling in Computationally Complex Quantum Circuits [56.22772134614514]
We experimentally investigate the dynamics of quantum scrambling on a 53-qubit quantum processor.
We show that while operator spreading is captured by an efficient classical model, operator entanglement requires exponentially scaled computational resources to simulate.
arXiv Detail & Related papers (2021-01-21T22:18:49Z) - Experimental Quantum Generative Adversarial Networks for Image
Generation [93.06926114985761]
We experimentally achieve the learning and generation of real-world hand-written digit images on a superconducting quantum processor.
Our work provides guidance for developing advanced quantum generative models on near-term quantum devices.
arXiv Detail & Related papers (2020-10-13T06:57:17Z) - Robustness Verification of Quantum Classifiers [1.3534683694551501]
We define a formal framework for the verification and analysis of quantum machine learning algorithms against noises.
A robust bound is derived and an algorithm is developed to check whether or not a quantum machine learning algorithm is robust with respect to quantum training data.
Our approach is implemented on Google's Quantum classifier and can verify the robustness of quantum machine learning algorithms with respect to a small disturbance of noises.
arXiv Detail & Related papers (2020-08-17T11:56:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.