Data-driven learning of non-autonomous systems
- URL: http://arxiv.org/abs/2006.02392v1
- Date: Tue, 2 Jun 2020 15:33:23 GMT
- Title: Data-driven learning of non-autonomous systems
- Authors: Tong Qin and Zhen Chen and John Jakeman and Dongbin Xiu
- Abstract summary: We present a numerical framework for recovering unknown non-autonomous dynamical systems with time-dependent inputs.
To circumvent the difficulty presented by the non-autonomous nature of the system, our method transforms the solution state into piecewise of the system over a discrete set of time instances.
- Score: 4.459185142332526
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a numerical framework for recovering unknown non-autonomous
dynamical systems with time-dependent inputs. To circumvent the difficulty
presented by the non-autonomous nature of the system, our method transforms the
solution state into piecewise integration of the system over a discrete set of
time instances. The time-dependent inputs are then locally parameterized by
using a proper model, for example, polynomial regression, in the pieces
determined by the time instances. This transforms the original system into a
piecewise parametric system that is locally time invariant. We then design a
deep neural network structure to learn the local models. Once the network model
is constructed, it can be iteratively used over time to conduct global system
prediction. We provide theoretical analysis of our algorithm and present a
number of numerical examples to demonstrate the effectiveness of the method.
Related papers
- Learning Nonautonomous Systems via Dynamic Mode Decomposition [0.0]
We present a data-driven learning approach for unknown nonautonomous dynamical systems with time-dependent inputs based on dynamic mode decomposition (DMD)
To circumvent the difficulty of approximating the time-dependent Koopman operators for nonautonomous systems, a modified system is employed as an approximation to the original nonautonomous system.
arXiv Detail & Related papers (2023-06-27T16:58:26Z) - Supervised DKRC with Images for Offline System Identification [77.34726150561087]
Modern dynamical systems are becoming increasingly non-linear and complex.
There is a need for a framework to model these systems in a compact and comprehensive representation for prediction and control.
Our approach learns these basis functions using a supervised learning approach.
arXiv Detail & Related papers (2021-09-06T04:39:06Z) - Reconstructing a dynamical system and forecasting time series by
self-consistent deep learning [4.947248396489835]
We introduce a self-consistent deep-learning framework for a noisy deterministic time series.
It provides unsupervised filtering, state-space reconstruction, identification of the underlying differential equations and forecasting.
arXiv Detail & Related papers (2021-08-04T06:10:58Z) - Consistency of mechanistic causal discovery in continuous-time using
Neural ODEs [85.7910042199734]
We consider causal discovery in continuous-time for the study of dynamical systems.
We propose a causal discovery algorithm based on penalized Neural ODEs.
arXiv Detail & Related papers (2021-05-06T08:48:02Z) - Neural ODE Processes [64.10282200111983]
We introduce Neural ODE Processes (NDPs), a new class of processes determined by a distribution over Neural ODEs.
We show that our model can successfully capture the dynamics of low-dimensional systems from just a few data-points.
arXiv Detail & Related papers (2021-03-23T09:32:06Z) - Using Data Assimilation to Train a Hybrid Forecast System that Combines
Machine-Learning and Knowledge-Based Components [52.77024349608834]
We consider the problem of data-assisted forecasting of chaotic dynamical systems when the available data is noisy partial measurements.
We show that by using partial measurements of the state of the dynamical system, we can train a machine learning model to improve predictions made by an imperfect knowledge-based model.
arXiv Detail & Related papers (2021-02-15T19:56:48Z) - Anomaly Detection of Time Series with Smoothness-Inducing Sequential
Variational Auto-Encoder [59.69303945834122]
We present a Smoothness-Inducing Sequential Variational Auto-Encoder (SISVAE) model for robust estimation and anomaly detection of time series.
Our model parameterizes mean and variance for each time-stamp with flexible neural networks.
We show the effectiveness of our model on both synthetic datasets and public real-world benchmarks.
arXiv Detail & Related papers (2021-02-02T06:15:15Z) - Non-intrusive surrogate modeling for parametrized time-dependent PDEs
using convolutional autoencoders [0.0]
We present a non-intrusive surrogate modeling scheme based on machine learning for predictive modeling of complex, systems by parametrized timedependent PDEs.
We use a convolutional autoencoder in conjunction with a feed forward neural network to establish a low-cost and accurate mapping from problem's parametric space to its solution space.
arXiv Detail & Related papers (2021-01-14T11:34:58Z) - A Novel Anomaly Detection Algorithm for Hybrid Production Systems based
on Deep Learning and Timed Automata [73.38551379469533]
DAD:DeepAnomalyDetection is a new approach for automatic model learning and anomaly detection in hybrid production systems.
It combines deep learning and timed automata for creating behavioral model from observations.
The algorithm has been applied to few data sets including two from real systems and has shown promising results.
arXiv Detail & Related papers (2020-10-29T08:27:43Z) - Hierarchical Deep Learning of Multiscale Differential Equation
Time-Steppers [5.6385744392820465]
We develop a hierarchy of deep neural network time-steppers to approximate the flow map of the dynamical system over a disparate range of time-scales.
The resulting model is purely data-driven and leverages features of the multiscale dynamics.
We benchmark our algorithm against state-of-the-art methods, such as LSTM, reservoir computing, and clockwork RNN.
arXiv Detail & Related papers (2020-08-22T07:16:53Z) - Variational inference formulation for a model-free simulation of a
dynamical system with unknown parameters by a recurrent neural network [8.616180927172548]
We propose a "model-free" simulation of a dynamical system with unknown parameters without prior knowledge.
The deep learning model aims to jointly learn the nonlinear time marching operator and the effects of the unknown parameters from a time series dataset.
It is found that the proposed deep learning model is capable of correctly identifying the dimensions of the random parameters and learning a representation of complex time series data.
arXiv Detail & Related papers (2020-03-02T20:57:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.