Uncertainty quantification in medical image segmentation with
normalizing flows
- URL: http://arxiv.org/abs/2006.02683v2
- Date: Tue, 4 Aug 2020 10:40:10 GMT
- Title: Uncertainty quantification in medical image segmentation with
normalizing flows
- Authors: Raghavendra Selvan, Frederik Faye, Jon Middleton, Akshay Pai
- Abstract summary: We propose a novel conditional generative model that is based on conditional Normalizing Flow (cFlow)
The basic idea is to increase the expressivity of the cVAE by introducing a cFlow transformation step after the encoder.
This yields improved approximations of the latent posterior distribution, allowing the model to capture richer segmentation variations.
- Score: 0.9176056742068811
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Medical image segmentation is inherently an ambiguous task due to factors
such as partial volumes and variations in anatomical definitions. While in most
cases the segmentation uncertainty is around the border of structures of
interest, there can also be considerable inter-rater differences. The class of
conditional variational autoencoders (cVAE) offers a principled approach to
inferring distributions over plausible segmentations that are conditioned on
input images. Segmentation uncertainty estimated from samples of such
distributions can be more informative than using pixel level probability
scores. In this work, we propose a novel conditional generative model that is
based on conditional Normalizing Flow (cFlow). The basic idea is to increase
the expressivity of the cVAE by introducing a cFlow transformation step after
the encoder. This yields improved approximations of the latent posterior
distribution, allowing the model to capture richer segmentation variations.
With this we show that the quality and diversity of samples obtained from our
conditional generative model is enhanced. Performance of our model, which we
call cFlow Net, is evaluated on two medical imaging datasets demonstrating
substantial improvements in both qualitative and quantitative measures when
compared to a recent cVAE based model.
Related papers
- FlowSDF: Flow Matching for Medical Image Segmentation Using Distance Transforms [60.195642571004804]
We propose FlowSDF, an image-guided conditional flow matching framework to represent the signed distance function (SDF)
By learning a vector field that is directly related to the probability path of a conditional distribution of SDFs, we can accurately sample from the distribution of segmentation masks.
arXiv Detail & Related papers (2024-05-28T11:47:12Z) - DiffSeg: A Segmentation Model for Skin Lesions Based on Diffusion Difference [2.9082809324784082]
We introduce DiffSeg, a segmentation model for skin lesions based on diffusion difference.
Its multi-output capability mimics doctors' annotation behavior, facilitating the visualization of segmentation result consistency and ambiguity.
We demonstrate the effectiveness of DiffSeg on the ISIC 2018 Challenge dataset, outperforming state-of-the-art U-Net-based methods.
arXiv Detail & Related papers (2024-04-25T09:57:52Z) - Towards Better Certified Segmentation via Diffusion Models [62.21617614504225]
segmentation models can be vulnerable to adversarial perturbations, which hinders their use in critical-decision systems like healthcare or autonomous driving.
Recently, randomized smoothing has been proposed to certify segmentation predictions by adding Gaussian noise to the input to obtain theoretical guarantees.
In this paper, we address the problem of certifying segmentation prediction using a combination of randomized smoothing and diffusion models.
arXiv Detail & Related papers (2023-06-16T16:30:39Z) - Variational Classification [51.2541371924591]
We derive a variational objective to train the model, analogous to the evidence lower bound (ELBO) used to train variational auto-encoders.
Treating inputs to the softmax layer as samples of a latent variable, our abstracted perspective reveals a potential inconsistency.
We induce a chosen latent distribution, instead of the implicit assumption found in a standard softmax layer.
arXiv Detail & Related papers (2023-05-17T17:47:19Z) - Stochastic Segmentation with Conditional Categorical Diffusion Models [3.8168879948759953]
We propose a conditional categorical diffusion model (CCDM) for semantic segmentation based on Denoising Diffusion Probabilistic Models.
Our results show that CCDM achieves state-of-the-art performance on LIDC, and outperforms established baselines on the classical segmentation dataset Cityscapes.
arXiv Detail & Related papers (2023-03-15T19:16:47Z) - Score-Based Generative Models for Medical Image Segmentation using
Signed Distance Functions [11.137438870686026]
We propose a conditional score-based generative modeling framework to represent the signed distance function (SDF)
The advantage of leveraging the SDF is a more natural distortion when compared to that of binary masks.
arXiv Detail & Related papers (2023-03-10T14:55:35Z) - A new perspective on probabilistic image modeling [92.89846887298852]
We present a new probabilistic approach for image modeling capable of density estimation, sampling and tractable inference.
DCGMMs can be trained end-to-end by SGD from random initial conditions, much like CNNs.
We show that DCGMMs compare favorably to several recent PC and SPN models in terms of inference, classification and sampling.
arXiv Detail & Related papers (2022-03-21T14:53:57Z) - Flexible Amortized Variational Inference in qBOLD MRI [56.4324135502282]
Oxygen extraction fraction (OEF) and deoxygenated blood volume (DBV) are more ambiguously determined from the data.
Existing inference methods tend to yield very noisy and underestimated OEF maps, while overestimating DBV.
This work describes a novel probabilistic machine learning approach that can infer plausible distributions of OEF and DBV.
arXiv Detail & Related papers (2022-03-11T10:47:16Z) - Improving Aleatoric Uncertainty Quantification in Multi-Annotated
Medical Image Segmentation with Normalizing Flows [0.0]
Quantifying uncertainty in medical image segmentation applications is essential.
We propose to use a more flexible approach by introducing Normalizing Flows (NFs)
We prove this hypothesis by adopting the Probabilistic U-Net and augmenting the posterior density with an NF, allowing it to be more expressive.
arXiv Detail & Related papers (2021-08-04T16:33:12Z) - Autoregressive Score Matching [113.4502004812927]
We propose autoregressive conditional score models (AR-CSM) where we parameterize the joint distribution in terms of the derivatives of univariable log-conditionals (scores)
For AR-CSM models, this divergence between data and model distributions can be computed and optimized efficiently, requiring no expensive sampling or adversarial training.
We show with extensive experimental results that it can be applied to density estimation on synthetic data, image generation, image denoising, and training latent variable models with implicit encoders.
arXiv Detail & Related papers (2020-10-24T07:01:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.