Unsupervised clustering of Roman pottery profiles from their SSAE
representation
- URL: http://arxiv.org/abs/2006.03156v1
- Date: Thu, 4 Jun 2020 22:19:22 GMT
- Title: Unsupervised clustering of Roman pottery profiles from their SSAE
representation
- Authors: Simone Parisotto and Alessandro Launaro and Ninetta Leone and
Carola-Bibiane Sch\"onlieb
- Abstract summary: We introduce the ROman COmmonware POTtery (ROCOPOT) database, which comprises of more than 2000 black and white imaging profiles of pottery shapes extracted from 11 Roman catalogues.
The partiality and the handcrafted variance of the shape fragments within this new database make their unsupervised clustering a very challenging problem.
Results are commented both from a mathematical and archaeological perspective so as to unlock new research directions in the respective communities.
- Score: 63.8376359764052
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper we introduce the ROman COmmonware POTtery (ROCOPOT) database,
which comprises of more than 2000 black and white imaging profiles of pottery
shapes extracted from 11 Roman catalogues and related to different excavation
sites. The partiality and the handcrafted variance of the shape fragments
within this new database make their unsupervised clustering a very challenging
problem: profile similarities are thus explored via the hierarchical clustering
of non-linear features learned in the latent representation space of a stacked
sparse autoencoder (SSAE) network, unveiling new profile matches. Results are
commented both from a mathematical and archaeological perspective so as to
unlock new research directions in the respective communities.
Related papers
- FissionVAE: Federated Non-IID Image Generation with Latent Space and Decoder Decomposition [9.059664504170287]
Federated learning enables decentralized clients to collaboratively learn a shared model while keeping all the training data local.
We introduce a novel approach, FissionVAE, which decomposes the latent space and constructs decoder branches tailored to individual client groups.
To evaluate our approach, we assemble two composite datasets: the first combines MNIST and FashionMNIST; the second comprises RGB datasets of cartoon and human faces, wild animals, marine vessels, and remote sensing images of Earth.
arXiv Detail & Related papers (2024-08-30T08:22:30Z) - IsUMap: Manifold Learning and Data Visualization leveraging Vietoris-Rips filtrations [0.08796261172196743]
We present a systematic and detailed construction of a metric representation for locally distorted metric spaces.
Our approach addresses limitations in existing methods by accommodating non-uniform data distributions and intricate local geometries.
arXiv Detail & Related papers (2024-07-25T07:46:30Z) - Distributional Reduction: Unifying Dimensionality Reduction and Clustering with Gromov-Wasserstein [56.62376364594194]
Unsupervised learning aims to capture the underlying structure of potentially large and high-dimensional datasets.
In this work, we revisit these approaches under the lens of optimal transport and exhibit relationships with the Gromov-Wasserstein problem.
This unveils a new general framework, called distributional reduction, that recovers DR and clustering as special cases and allows addressing them jointly within a single optimization problem.
arXiv Detail & Related papers (2024-02-03T19:00:19Z) - DA-VEGAN: Differentiably Augmenting VAE-GAN for microstructure
reconstruction from extremely small data sets [110.60233593474796]
DA-VEGAN is a model with two central innovations.
A $beta$-variational autoencoder is incorporated into a hybrid GAN architecture.
A custom differentiable data augmentation scheme is developed specifically for this architecture.
arXiv Detail & Related papers (2023-02-17T08:49:09Z) - Unsupervised Clustering of Roman Potsherds via Variational Autoencoders [63.8376359764052]
We propose an artificial intelligence solution to support archaeologists in the classification task of Roman commonware potsherds.
The partiality and handcrafted variance of the fragments make their matching a challenging problem.
We propose to pair similar profiles via the unsupervised hierarchical clustering of non-linear features learned in the latent space of a deep convolutional Variational Autoencoder (VAE) network.
arXiv Detail & Related papers (2022-03-14T18:56:13Z) - Unsupervised Multi-view Clustering by Squeezing Hybrid Knowledge from
Cross View and Each View [68.88732535086338]
This paper proposes a new multi-view clustering method, low-rank subspace multi-view clustering based on adaptive graph regularization.
Experimental results for five widely used multi-view benchmarks show that our proposed algorithm surpasses other state-of-the-art methods by a clear margin.
arXiv Detail & Related papers (2020-08-23T08:25:06Z) - Network Clustering Via Kernel-ARMA Modeling and the Grassmannian The
Brain-Network Case [6.78543866474958]
This paper introduces a clustering framework for networks with nodes annotated with time-series data.
The framework addresses all types of network-clustering problems: state clustering, node clustering within states, and even subnetwork-state-sequence identification/tracking.
arXiv Detail & Related papers (2020-02-18T19:48:38Z) - Seismic horizon detection with neural networks [62.997667081978825]
This paper is an open-sourced research of applying binary segmentation approach to the task of horizon detection on multiple real seismic cubes with a focus on inter-cube generalization of the predictive model.
The main contribution of this paper is an open-sourced research of applying binary segmentation approach to the task of horizon detection on multiple real seismic cubes with a focus on inter-cube generalization of the predictive model.
arXiv Detail & Related papers (2020-01-10T11:30:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.