論文の概要: Blended Learning Content Generation: A Guide for Busy Academics
- arxiv url: http://arxiv.org/abs/2006.03730v1
- Date: Fri, 5 Jun 2020 23:05:51 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-17 01:48:52.905772
- Title: Blended Learning Content Generation: A Guide for Busy Academics
- Title(参考訳): Blended Learning Content Generation: A Guide for Busy Academics
- Authors: Richard Hill
- Abstract要約: 大学研究者は、柔軟なデリバリ方法をサポートする学習教材を作成する必要がある。
コンピュータサイエンス分野の例は、オンラインとブレンドされた教育資源に学生を惹きつける革新的なアプローチを説明するために使われる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: A practical guide for university academics who need to create learning
materials that support flexible delivery methods. Examples from the Computer
Science domain are used to illustrate innovative approaches to engaging
students with online and blended teaching resources.
- Abstract(参考訳): フレキシブルな配送方法をサポートする学習教材の作成が必要な大学生のための実践的ガイド。
コンピュータサイエンス分野の例は、オンラインとブレンドされた教育資源に学生を惹きつける革新的なアプローチを説明するために使われる。
関連論文リスト
- On conceptualisation and an overview of learning path recommender systems in e-learning [0.0]
本研究では,レコメンデーションシステムの構築方法について検討した。
学習経路とその学習指標の共通概念を提示し、この文脈に5つの異なる推奨事項を埋め込む。
論文 参考訳(メタデータ) (2024-06-07T10:30:43Z) - Learning Structure and Knowledge Aware Representation with Large Language Models for Concept Recommendation [50.31872005772817]
概念推薦は,学習者が自身の知識状態と人間の知識システムに基づいて学習する次の概念を提案することを目的としている。
従来のアプローチでは、人間の知識システムをこれらの教育モデルを設計するプロセスに効果的に統合していない。
SKarREC(Structure and Knowledge Aware Representation Learning framework for concept Recommendation)を提案する。
論文 参考訳(メタデータ) (2024-05-21T01:35:36Z) - Finding Paths for Explainable MOOC Recommendation: A Learner Perspective [2.4775868218890484]
グラフ推論を用いたMOOC(Massive Open Online Courses)の推薦システムを提案する。
提案手法の実践的意義を検証するため,利用者の知覚を調査した。
2つの教育データセットで実験を行うことにより,本手法の一般化可能性を示す。
論文 参考訳(メタデータ) (2023-12-11T15:27:22Z) - Agile Methodology in Online Learning and How It Can Improve
Communication: A Case Study [0.0]
私たちは、オンライン教育で使用できるソフトウェア工学のアジャイル方法論から着想を得たテクニックの一覧を詳述します。
また、学生の成績を分析することで、これらのアジャイルにインスパイアされたテクニックが教育のプロセスに役立つことを示しています。
論文 参考訳(メタデータ) (2023-07-18T18:36:30Z) - Learning Knowledge Representation with Meta Knowledge Distillation for
Single Image Super-Resolution [82.89021683451432]
単一画像超解像課題に対する教師/学生アーキテクチャに基づくモデルに依存しないメタ知識蒸留法を提案する。
種々の単一画像超解像データセットを用いた実験により,提案手法は既存の知識表現関連蒸留法よりも優れた性能を示した。
論文 参考訳(メタデータ) (2022-07-18T02:41:04Z) - DialogID: A Dialogic Instruction Dataset for Improving Teaching
Effectiveness in Online Environments [24.094249468028664]
本稿では,30,431の効果的な対話型命令を含むオンライン対話型命令検出データセット,textscDialogIDを提案する。
本稿では,対話型命令検出の品質と一般化を向上する,シンプルで効果的な対向学習パラダイムを提案する。
論文 参考訳(メタデータ) (2022-06-24T02:07:12Z) - Dive into Deep Learning [119.30375933463156]
この本はJupyterのノートブックでドラフトされており、説明図、数学、インタラクティブな例を自己完結型コードとシームレスに統合している。
私たちのゴールは、(i)誰でも自由に利用できるリソースを提供すること、(ii)応用機械学習科学者になるための出発点を提供するのに十分な技術的な深さを提供すること、(iii)実行可能なコードを含み、実際にどのように問題を解決するかを読者に示すこと、(iv)私たちとコミュニティの両方による迅速なアップデートを可能にすることです。
論文 参考訳(メタデータ) (2021-06-21T18:19:46Z) - KnowledgeCheckR: Intelligent Techniques for Counteracting Forgetting [52.623349754076024]
KnowledgeCheckRに統合された推奨アプローチの概要を提供します。
その例としては,将来的に繰り返される学習内容の識別を支援するユーティリティベースのレコメンデーション,セッションベースのレコメンデーションを実装するための協調フィルタリングアプローチ,インテリジェントな質問応答を支援するコンテントベースのレコメンデーションなどがある。
論文 参考訳(メタデータ) (2021-02-15T20:06:28Z) - Attentional Graph Convolutional Networks for Knowledge Concept
Recommendation in MOOCs in a Heterogeneous View [72.98388321383989]
大規模なオープンオンラインコース(MOOC)は、学生が知識を習得するための大規模かつオープンな学習機会を提供する。
学生の関心を惹きつけるため、MOOCsプロバイダによる推薦制度が採用され、学生にコースを推薦する。
そこで本研究では,MOOCにおける知識概念レコメンデーションのために,Attentional Heterogeneous Graph Convolutional Deep Knowledge Recommender (ACKRec) という,エンドツーエンドのグラフニューラルネットワークに基づくアプローチを提案する。
論文 参考訳(メタデータ) (2020-06-23T18:28:08Z) - Knowledge-guided Deep Reinforcement Learning for Interactive
Recommendation [49.32287384774351]
インタラクティブレコメンデーションは、アイテムとユーザ間の動的インタラクションから学び、応答性と精度を達成することを目的としている。
本稿では,知識指導型深層強化学習を提案する。
論文 参考訳(メタデータ) (2020-04-17T05:26:47Z) - Interactive Summarizing -- Automatic Slide Localization Technology as
Generative Learning Tool [10.81386784858998]
映像要約は,ビデオ講義における学習者の要約体験を高めるために有効な技術である。
対話型要約モデルは,畳み込みニューラルネットワークが支援するビデオ講義学習プロセスにおいて,学習者がどのように関与しているかを説明するように設計されている。
論文 参考訳(メタデータ) (2020-02-25T22:22:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。