論文の概要: Non-Convex Robust Hypothesis Testing using Sinkhorn Uncertainty Sets
- arxiv url: http://arxiv.org/abs/2403.14822v1
- Date: Thu, 21 Mar 2024 20:29:43 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-25 19:16:32.934867
- Title: Non-Convex Robust Hypothesis Testing using Sinkhorn Uncertainty Sets
- Title(参考訳): シンクホーン不確かさ集合を用いた非凸ロバスト仮説の検証
- Authors: Jie Wang, Rui Gao, Yao Xie,
- Abstract要約: 非破壊仮説テスト問題に対処する新しい枠組みを提案する。
目標は、最大数値リスクを最小限に抑える最適な検出器を探すことである。
- 参考スコア(独自算出の注目度): 18.46110328123008
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a new framework to address the non-convex robust hypothesis testing problem, wherein the goal is to seek the optimal detector that minimizes the maximum of worst-case type-I and type-II risk functions. The distributional uncertainty sets are constructed to center around the empirical distribution derived from samples based on Sinkhorn discrepancy. Given that the objective involves non-convex, non-smooth probabilistic functions that are often intractable to optimize, existing methods resort to approximations rather than exact solutions. To tackle the challenge, we introduce an exact mixed-integer exponential conic reformulation of the problem, which can be solved into a global optimum with a moderate amount of input data. Subsequently, we propose a convex approximation, demonstrating its superiority over current state-of-the-art methodologies in literature. Furthermore, we establish connections between robust hypothesis testing and regularized formulations of non-robust risk functions, offering insightful interpretations. Our numerical study highlights the satisfactory testing performance and computational efficiency of the proposed framework.
- Abstract(参考訳): 本稿では,非凸頑健な仮説テスト問題に対処する新しい枠組みを提案する。このフレームワークの目的は,最悪のケースタイプIとタイプIIのリスク関数の最大値を最小限に抑える最適な検出方法を求めることである。
分布の不確実性集合はシンクホーンの差分に基づくサンプルから得られた経験的分布を中心に構成される。
目的が非凸で非滑らかな確率関数で、最適化に難渋することが多いことを考えると、既存の手法は正確な解ではなく近似に頼っている。
この課題に対処するために、我々は、適度な量の入力データで大域最適に解ける、正確な混合整数指数的円錐変換を導入する。
その後,文献における現在の最先端方法論よりも優れていることを示す凸近似を提案する。
さらに、ロバスト仮説テストと非ロバストリスク関数の規則化された定式化の関連性を確立し、洞察に富んだ解釈を提供する。
本研究は,提案フレームワークの良好なテスト性能と計算効率について述べる。
関連論文リスト
- Model-Based Epistemic Variance of Values for Risk-Aware Policy
Optimization [63.32053223422317]
モデルベース強化学習における累積報酬に対する不確実性を定量化する問題を考察する。
特に、MDP上の分布によって誘導される値の分散を特徴付けることに焦点をあてる。
我々は、解が値の真後分散に収束する新しい不確実性ベルマン方程式(UBE)を提案する。
論文 参考訳(メタデータ) (2023-12-07T15:55:58Z) - Calibrating Neural Simulation-Based Inference with Differentiable
Coverage Probability [50.44439018155837]
ニューラルモデルのトレーニング目的に直接キャリブレーション項を含めることを提案する。
古典的なキャリブレーション誤差の定式化を緩和することにより、エンドツーエンドのバックプロパゲーションを可能にする。
既存の計算パイプラインに直接適用でき、信頼性の高いブラックボックス後部推論が可能である。
論文 参考訳(メタデータ) (2023-10-20T10:20:45Z) - Optimal Learning via Moderate Deviations Theory [4.6930976245638245]
我々は、中等度偏差原理に基づくアプローチを用いて、高精度な信頼区間の体系的構築を開発する。
提案した信頼区間は,指数的精度,最小性,整合性,誤評価確率,結果整合性(UMA)特性の基準を満たすという意味で統計的に最適であることが示されている。
論文 参考訳(メタデータ) (2023-05-23T19:57:57Z) - Rockafellian Relaxation and Stochastic Optimization under Perturbations [0.056247917037481096]
我々は、ロカフェル緩和に基づく楽観的なフレームワークを開発し、最適化は元の決定空間だけでなく、モデルの選択と共同で行われる。
この枠組みは、厳密かつ厳密なロックフェリアンの新たな概念に焦点を合わせ、特定の設定で否定的な「正規化」の解釈が現れる。
論文 参考訳(メタデータ) (2022-04-10T20:02:41Z) - Kernel Robust Hypothesis Testing [20.78285964841612]
本稿では,カーネル方式を用いて不確実性集合をデータ駆動方式で構築する。
目標は、不確実性集合上の最悪のケース分布の下でうまく機能するテストを設計することである。
Neyman-Pearsonの設定では、誤検知の最悪のケース確率を最小限に抑え、誤警報の最悪のケース確率を制約する。
論文 参考訳(メタデータ) (2022-03-23T23:59:03Z) - A Data-Driven Approach to Robust Hypothesis Testing Using Sinkhorn
Uncertainty Sets [12.061662346636645]
シンクホーン距離を用いた試料から, 実験分布を中心とした分布不確実性集合に対する最悪の検出法を求める。
ワッサーシュタインのロバスト試験と比較すると、対応する最も好ましい分布はトレーニングサンプルを超えてサポートされ、より柔軟な検出器を提供する。
論文 参考訳(メタデータ) (2022-02-09T03:26:15Z) - Optimal variance-reduced stochastic approximation in Banach spaces [114.8734960258221]
可分バナッハ空間上で定義された収縮作用素の定点を推定する問題について検討する。
演算子欠陥と推定誤差の両方に対して漸近的でない境界を確立する。
論文 参考訳(メタデータ) (2022-01-21T02:46:57Z) - Near-Optimal High Probability Complexity Bounds for Non-Smooth
Stochastic Optimization with Heavy-Tailed Noise [63.304196997102494]
アルゴリズムが高い確率で小さな客観的残差を与えることを理論的に保証することが不可欠である。
既存の非滑らか凸最適化法は、負のパワーまたは対数的な信頼度に依存する境界の複雑さを持つ。
クリッピングを用いた2つの勾配法に対して, 新たなステップサイズルールを提案する。
論文 参考訳(メタデータ) (2021-06-10T17:54:21Z) - A Stochastic Subgradient Method for Distributionally Robust Non-Convex
Learning [2.007262412327553]
堅牢性は、基礎となるデータ分布の不確実性に関するものです。
本手法は摂動条件を満たすことに収束することを示す。
また、実際のデータセット上でのアルゴリズムの性能についても解説する。
論文 参考訳(メタデータ) (2020-06-08T18:52:40Z) - Efficient Ensemble Model Generation for Uncertainty Estimation with
Bayesian Approximation in Segmentation [74.06904875527556]
アンサンブルセグメンテーションモデルを構築するための汎用的で効率的なセグメンテーションフレームワークを提案する。
提案手法では,層選択法を用いて効率よくアンサンブルモデルを生成することができる。
また,新たな画素単位の不確実性損失を考案し,予測性能を向上する。
論文 参考訳(メタデータ) (2020-05-21T16:08:38Z) - High-Dimensional Robust Mean Estimation via Gradient Descent [73.61354272612752]
一定対向分数の存在下でのロバスト平均推定の問題は勾配降下によって解けることを示す。
我々の研究は、近辺の非補題推定とロバスト統計の間の興味深い関係を確立する。
論文 参考訳(メタデータ) (2020-05-04T10:48:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。