論文の概要: Robust Estimation of Tree Structured Ising Models
- arxiv url: http://arxiv.org/abs/2006.05601v1
- Date: Wed, 10 Jun 2020 01:32:45 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-23 04:21:39.110056
- Title: Robust Estimation of Tree Structured Ising Models
- Title(参考訳): 樹木構造イジングモデルのロバスト推定
- Authors: Ashish Katiyar, Vatsal Shah, Constantine Caramanis
- Abstract要約: 我々は、異なる確率変数の符号が、おそらく不等で未知の確率で独立に反転するときに、イジングモデルを学習するタスクを考える。
しかし, この不同一性は, 葉ノードが近傍と位置を交換して形成する小さな同値類に限られる。
- 参考スコア(独自算出の注目度): 20.224160348675422
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We consider the task of learning Ising models when the signs of different
random variables are flipped independently with possibly unequal, unknown
probabilities. In this paper, we focus on the problem of robust estimation of
tree-structured Ising models. Without any additional assumption of side
information, this is an open problem. We first prove that this problem is
unidentifiable, however, this unidentifiability is limited to a small
equivalence class of trees formed by leaf nodes exchanging positions with their
neighbors. Next, we propose an algorithm to solve the above problem with
logarithmic sample complexity in the number of nodes and polynomial run-time
complexity. Lastly, we empirically demonstrate that, as expected, existing
algorithms are not inherently robust in the proposed setting whereas our
algorithm correctly recovers the underlying equivalence class.
- Abstract(参考訳): 異なる確率変数の符号が独立に反転し、おそらく不平等で未知の確率を持つ場合、イジングモデルを学ぶタスクを考える。
本稿では,木構造イジングモデルのロバストな推定問題に焦点をあてる。
追加のサイド情報の仮定がなければ、これはオープンな問題です。
この問題はまず同定不能であることが証明されるが、この識別不能性は葉ノードが隣接ノードとの位置を交換することによって形成される木の小さな同値類に限られる。
次に,ノード数と多項式実行時複雑性における対数的サンプル複雑性の問題を解くアルゴリズムを提案する。
最後に,本アルゴリズムが基礎となる同値クラスを正しくリカバリするのに対し,既存のアルゴリズムは提案手法では本質的に頑健ではないことを実証的に示す。
関連論文リスト
- Best Arm Identification with Fixed Budget: A Large Deviation Perspective [54.305323903582845]
我々は、様々な武器の報酬間の経験的ギャップに基づいて、あらゆるラウンドで腕を拒絶できる真に適応的なアルゴリズムであるsredを提示する。
特に、様々な武器の報酬の間の経験的ギャップに基づいて、あらゆるラウンドで腕を拒絶できる真に適応的なアルゴリズムであるsredを提示する。
論文 参考訳(メタデータ) (2023-12-19T13:17:43Z) - Identification for Tree-shaped Structural Causal Models in Polynomial
Time [1.5151556900495786]
ノード間の相関から因果パラメータを同定することは、人工知能におけるオープンな問題である。
本稿では,木を配向成分とするSCMについて検討する。
本稿では,木形SCMの同定問題を解くランダム時間アルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-11-23T15:26:29Z) - Learning to Bound Counterfactual Inference in Structural Causal Models
from Observational and Randomised Data [64.96984404868411]
我々は、従来のEMベースのアルゴリズムを拡張するための全体的なデータの特徴付けを導出する。
新しいアルゴリズムは、そのような混合データソースからモデルパラメータの(不特定性)領域を近似することを学ぶ。
反実的な結果に間隔近似を与え、それが特定可能な場合の点に崩壊する。
論文 参考訳(メタデータ) (2022-12-06T12:42:11Z) - Robust Model Selection of Gaussian Graphical Models [16.933125281564163]
ノイズ崩壊サンプルは、グラフィカルモデル選択において重要な課題を示す。
本稿では,基礎となるグラフを同定されたあいまいさまで確実に復元するアルゴリズムを提案する。
この情報は、電力網、ソーシャルネットワーク、タンパク質とタンパク質の相互作用、神経構造など、現実世界の様々な問題に有用である。
論文 参考訳(メタデータ) (2022-11-10T16:50:50Z) - Estimating large causal polytrees from small samples [6.322831694506287]
比較的小さなi.d.サンプルから大きな因果ポリツリーを推定する問題を考察する。
このような設定で高い精度で木を復元するアルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-09-15T03:41:09Z) - Certifiable Robustness for Nearest Neighbor Classifiers [6.487663563916903]
単純で広くデプロイされた分類アルゴリズム、$k$-Nearest Neighbors(k$-NN)の認証の複雑さについて検討する。
制約が関数依存(FD)である場合には、一貫性のないデータセットに重点を置いています。
そこでは、あるラベルを予測する可能性のある世界の数を数えることが目的である。
論文 参考訳(メタデータ) (2022-01-13T02:55:10Z) - Generalization of Neural Combinatorial Solvers Through the Lens of
Adversarial Robustness [68.97830259849086]
ほとんどのデータセットは単純なサブプロブレムのみをキャプチャし、おそらくは突発的な特徴に悩まされる。
本研究では, 局所的な一般化特性である対向ロバスト性について検討し, 厳密でモデル固有な例と突発的な特徴を明らかにする。
他のアプリケーションとは異なり、摂動モデルは知覚できないという主観的な概念に基づいて設計されているため、摂動モデルは効率的かつ健全である。
驚くべきことに、そのような摂動によって、十分に表現力のあるニューラルソルバは、教師あり学習で共通する正確さと悪質さのトレードオフの限界に悩まされない。
論文 参考訳(メタデータ) (2021-10-21T07:28:11Z) - Outlier-Robust Learning of Ising Models Under Dobrushin's Condition [57.89518300699042]
本研究では, サンプルの一定割合が逆向きに破壊されるような外乱条件下で, ドブルシンの条件を満たすIsingモデルの学習問題について検討する。
我々の主な成果は、ほぼ最適誤差保証を伴うこの問題に対して、計算効率のよい最初の頑健な学習アルゴリズムを提供することである。
論文 参考訳(メタデータ) (2021-02-03T18:00:57Z) - SGA: A Robust Algorithm for Partial Recovery of Tree-Structured
Graphical Models with Noisy Samples [75.32013242448151]
ノードからの観測が独立しているが非識別的に分散ノイズによって破損した場合、Ising Treeモデルの学習を検討する。
Katiyarら。
(2020) は, 正確な木構造は復元できないが, 部分木構造を復元できることを示した。
統計的に堅牢な部分木回復アルゴリズムであるSymmetrized Geometric Averaging(SGA)を提案する。
論文 参考訳(メタデータ) (2021-01-22T01:57:35Z) - Sample-Optimal and Efficient Learning of Tree Ising models [24.201827888085944]
最適な$O(n ln n/epsilon2)$サンプルから,$n$-variable tree-structured Isingモデルが全変動距離$epsilon$の範囲内で計算効率良く学習可能であることを示す。
我々の保証は、Chow-Liuアルゴリズムの既知の結果に従わない。
論文 参考訳(メタデータ) (2020-10-28T10:17:48Z) - Consistency of a Recurrent Language Model With Respect to Incomplete
Decoding [67.54760086239514]
逐次言語モデルから無限長のシーケンスを受信する問題について検討する。
不整合に対処する2つの対策として、トップkと核サンプリングの一貫性のある変種と、自己終端の繰り返し言語モデルを提案する。
論文 参考訳(メタデータ) (2020-02-06T19:56:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。