論文の概要: Two-level Graph Neural Network
- arxiv url: http://arxiv.org/abs/2201.01190v1
- Date: Mon, 3 Jan 2022 02:15:20 GMT
- ステータス: 処理完了
- システム内更新日: 2022-01-05 13:41:10.995305
- Title: Two-level Graph Neural Network
- Title(参考訳): 2レベルグラフニューラルネットワーク
- Authors: Xing Ai, Chengyu Sun, Zhihong Zhang, Edwin R Hancock
- Abstract要約: 2レベルGNN(TL-GNN)と呼ばれる新しいGNNフレームワークを提案する。
これは、サブグラフレベル情報とノードレベル情報とをマージする。
実験により、TL-GNNは既存のGNNよりも優れ、最先端のパフォーマンスを達成することが示された。
- 参考スコア(独自算出の注目度): 15.014364222532347
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph Neural Networks (GNNs) are recently proposed neural network structures
for the processing of graph-structured data. Due to their employed neighbor
aggregation strategy, existing GNNs focus on capturing node-level information
and neglect high-level information. Existing GNNs therefore suffer from
representational limitations caused by the Local Permutation Invariance (LPI)
problem. To overcome these limitations and enrich the features captured by
GNNs, we propose a novel GNN framework, referred to as the Two-level GNN
(TL-GNN). This merges subgraph-level information with node-level information.
Moreover, we provide a mathematical analysis of the LPI problem which
demonstrates that subgraph-level information is beneficial to overcoming the
problems associated with LPI. A subgraph counting method based on the dynamic
programming algorithm is also proposed, and this has time complexity is O(n^3),
n is the number of nodes of a graph. Experiments show that TL-GNN outperforms
existing GNNs and achieves state-of-the-art performance.
- Abstract(参考訳): グラフニューラルネットワーク(GNN)は、グラフ構造化データの処理のためのニューラルネットワーク構造である。
近隣の集約戦略が採用されているため、既存のGNNはノードレベルの情報の取得と高レベルの情報の無視に重点を置いている。
既存のGNNは、LPI(Local Permutation Invariance)問題によって引き起こされる表現制限に悩まされる。
これらの制限を克服し、GNNが捉えた機能を充実させるため、2レベルGNN(TL-GNN)と呼ばれる新しいGNNフレームワークを提案する。
これはサブグラフレベルの情報とノードレベルの情報をマージする。
さらに,LPI問題の数学的解析を行い,LPIに関連する問題を克服する上で,サブグラフレベルの情報が有用であることを示す。
動的プログラミングアルゴリズムに基づく部分グラフカウント法も提案され、時間複雑性は O(n^3) であり、n はグラフのノード数である。
実験により、TL-GNNは既存のGNNよりも優れ、最先端の性能を達成することが示された。
関連論文リスト
- MAG-GNN: Reinforcement Learning Boosted Graph Neural Network [68.60884768323739]
特定の研究の行は、GNNの表現性を向上させるためにサブグラフ情報を使用するサブグラフGNNを提案し、大きな成功を収めた。
このような効果は、すべての可能な部分グラフを列挙することによって、GNNの効率を犠牲にする。
本稿では,強化学習(RL)により強化されたGNNである磁気グラフニューラルネットワーク(MAG-GNN)を提案する。
論文 参考訳(メタデータ) (2023-10-29T20:32:21Z) - DEGREE: Decomposition Based Explanation For Graph Neural Networks [55.38873296761104]
我々は,GNN予測に対する忠実な説明を提供するためにDGREEを提案する。
GNNの情報生成と集約機構を分解することにより、DECREEは入力グラフの特定のコンポーネントのコントリビューションを最終的な予測に追跡することができる。
また,従来の手法で見過ごされるグラフノード間の複雑な相互作用を明らかにするために,サブグラフレベルの解釈アルゴリズムを設計する。
論文 参考訳(メタデータ) (2023-05-22T10:29:52Z) - Increase and Conquer: Training Graph Neural Networks on Growing Graphs [116.03137405192356]
本稿では,このグラフからBernoulliをサンプリングしたグラフ上でGNNをトレーニングすることで,WNN(Graphon Neural Network)を学習する問題を考察する。
これらの結果から着想を得た大規模グラフ上でGNNを学習するアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-06-07T15:05:59Z) - Enhance Information Propagation for Graph Neural Network by
Heterogeneous Aggregations [7.3136594018091134]
グラフニューラルネットワークは、ディープラーニングの成功の継続として出現している。
ヘテロジニアスアグリゲーションを組み合わせることで,GNN層間の情報伝達を促進することを提案する。
我々は,多くのグラフ分類ベンチマークにおいて,HAG-Netの有効性を実証的に検証した。
論文 参考訳(メタデータ) (2021-02-08T08:57:56Z) - Identity-aware Graph Neural Networks [63.6952975763946]
グラフニューラルネットワーク(ID-GNN)を1-WLテストよりも表現力の高いメッセージクラスを開発しています。
ID-GNNは、メッセージパッシング中にノードのIDを誘導的に考慮することにより、既存のGNNアーキテクチャを拡張します。
既存のGNNをID-GNNに変換すると、挑戦ノード、エッジ、グラフプロパティ予測タスクの平均40%の精度が向上することを示す。
論文 参考訳(メタデータ) (2021-01-25T18:59:01Z) - Learning Graph Neural Networks with Approximate Gradient Descent [24.49427608361397]
ラベルがノードまたはグラフに添付されているかどうかに応じて、2種類のグラフニューラルネットワーク(GNN)が調査されます。
gnnトレーニングアルゴリズムの設計と解析のための包括的なフレームワークを開発した。
提案アルゴリズムは,GNNの根底にある真のパラメータに対する線形収束率を保証する。
論文 参考訳(メタデータ) (2020-12-07T02:54:48Z) - A Unified View on Graph Neural Networks as Graph Signal Denoising [49.980783124401555]
グラフニューラルネットワーク(GNN)は,グラフ構造化データの学習表現において顕著に普及している。
本研究では,代表的GNNモデル群における集約過程を,グラフ記述問題の解法とみなすことができることを数学的に確立する。
UGNNから派生した新しいGNNモデルADA-UGNNをインスタンス化し、ノード間の適応的滑らかさでグラフを処理する。
論文 参考訳(メタデータ) (2020-10-05T04:57:18Z) - Hierarchical Message-Passing Graph Neural Networks [12.207978823927386]
本稿では,新しい階層型メッセージパッシンググラフニューラルネットワークフレームワークを提案する。
鍵となるアイデアは、フラットグラフ内のすべてのノードをマルチレベルなスーパーグラフに再編成する階層構造を生成することである。
階層型コミュニティ対応グラフニューラルネットワーク(HC-GNN)と呼ばれる,このフレームワークを実装した最初のモデルを提案する。
論文 参考訳(メタデータ) (2020-09-08T13:11:07Z) - Graph Neural Networks for Motion Planning [108.51253840181677]
低次元問題に対する高密度固定グラフ上のGNNと高次元問題に対するサンプリングベースGNNの2つの手法を提案する。
RRT(Rapidly-Exploring Random Trees)におけるクリティカルノードの特定やサンプリング分布の学習といった計画上の問題にGNNが取り組む能力について検討する。
臨界サンプリング、振り子、6つのDoFロボットアームによる実験では、GNNは従来の分析手法の改善だけでなく、完全に接続されたニューラルネットワークや畳み込みニューラルネットワークを用いた学習アプローチも示している。
論文 参考訳(メタデータ) (2020-06-11T08:19:06Z) - Generalization and Representational Limits of Graph Neural Networks [46.20253808402385]
ローカル情報に完全に依存するグラフニューラルネットワーク(GNN)では,いくつかの重要なグラフ特性を計算できないことを示す。
メッセージパッシングGNNに対する最初のデータ依存一般化境界を提供する。
私たちのバウンダリは、既存のVC次元ベースのGNN保証よりもはるかに厳格で、リカレントニューラルネットワークのRademacherバウンダリと同等です。
論文 参考訳(メタデータ) (2020-02-14T18:10:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。