論文の概要: Learning Graph Neural Networks with Approximate Gradient Descent
- arxiv url: http://arxiv.org/abs/2012.03429v1
- Date: Mon, 7 Dec 2020 02:54:48 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-21 09:10:29.323197
- Title: Learning Graph Neural Networks with Approximate Gradient Descent
- Title(参考訳): 近似勾配降下によるグラフニューラルネットワークの学習
- Authors: Qunwei Li and Shaofeng Zou and Wenliang Zhong
- Abstract要約: ラベルがノードまたはグラフに添付されているかどうかに応じて、2種類のグラフニューラルネットワーク(GNN)が調査されます。
gnnトレーニングアルゴリズムの設計と解析のための包括的なフレームワークを開発した。
提案アルゴリズムは,GNNの根底にある真のパラメータに対する線形収束率を保証する。
- 参考スコア(独自算出の注目度): 24.49427608361397
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The first provably efficient algorithm for learning graph neural networks
(GNNs) with one hidden layer for node information convolution is provided in
this paper. Two types of GNNs are investigated, depending on whether labels are
attached to nodes or graphs. A comprehensive framework for designing and
analyzing convergence of GNN training algorithms is developed. The algorithm
proposed is applicable to a wide range of activation functions including ReLU,
Leaky ReLU, Sigmod, Softplus and Swish. It is shown that the proposed algorithm
guarantees a linear convergence rate to the underlying true parameters of GNNs.
For both types of GNNs, sample complexity in terms of the number of nodes or
the number of graphs is characterized. The impact of feature dimension and GNN
structure on the convergence rate is also theoretically characterized.
Numerical experiments are further provided to validate our theoretical
analysis.
- Abstract(参考訳): 本稿では,ノード情報畳み込みのための隠れ層を持つグラフニューラルネットワーク(GNN)を学習するアルゴリズムについて述べる。
ラベルがノードやグラフにアタッチされているかどうかによって、2種類のGNNが調査される。
gnnトレーニングアルゴリズムの設計と解析のための包括的なフレームワークを開発した。
提案アルゴリズムは,ReLU,Leaky ReLU,Sigmod,Softplus,Swishなど,幅広い活性化関数に適用可能である。
提案アルゴリズムは,GNNの根底にある真のパラメータに対する線形収束率を保証する。
いずれのタイプのgnnにおいても、ノード数やグラフ数の観点からのサンプル複雑性が特徴である。
特徴量とGNN構造が収束率に及ぼす影響も理論的に評価されている。
理論解析を検証するために, 数値実験も行われている。
関連論文リスト
- DEGREE: Decomposition Based Explanation For Graph Neural Networks [55.38873296761104]
我々は,GNN予測に対する忠実な説明を提供するためにDGREEを提案する。
GNNの情報生成と集約機構を分解することにより、DECREEは入力グラフの特定のコンポーネントのコントリビューションを最終的な予測に追跡することができる。
また,従来の手法で見過ごされるグラフノード間の複雑な相互作用を明らかにするために,サブグラフレベルの解釈アルゴリズムを設計する。
論文 参考訳(メタデータ) (2023-05-22T10:29:52Z) - Two-level Graph Neural Network [15.014364222532347]
2レベルGNN(TL-GNN)と呼ばれる新しいGNNフレームワークを提案する。
これは、サブグラフレベル情報とノードレベル情報とをマージする。
実験により、TL-GNNは既存のGNNよりも優れ、最先端のパフォーマンスを達成することが示された。
論文 参考訳(メタデータ) (2022-01-03T02:15:20Z) - Edge-Level Explanations for Graph Neural Networks by Extending
Explainability Methods for Convolutional Neural Networks [33.20913249848369]
グラフニューラルネットワーク(GNN)は、グラフデータを入力として扱うディープラーニングモデルであり、トラフィック予測や分子特性予測といった様々なタスクに適用される。
本稿では,CNNに対する説明可能性の手法として,LIME(Local Interpretable Model-Agnostic Explanations)やGradient-Based Saliency Maps,Gradient-Weighted Class Activation Mapping(Grad-CAM)をGNNに拡張する。
実験結果から,LIMEに基づくアプローチは実環境における複数のタスクに対する最も効率的な説明可能性手法であり,その状態においても優れていたことが示唆された。
論文 参考訳(メタデータ) (2021-11-01T06:27:29Z) - A Unified View on Graph Neural Networks as Graph Signal Denoising [49.980783124401555]
グラフニューラルネットワーク(GNN)は,グラフ構造化データの学習表現において顕著に普及している。
本研究では,代表的GNNモデル群における集約過程を,グラフ記述問題の解法とみなすことができることを数学的に確立する。
UGNNから派生した新しいGNNモデルADA-UGNNをインスタンス化し、ノード間の適応的滑らかさでグラフを処理する。
論文 参考訳(メタデータ) (2020-10-05T04:57:18Z) - Fast Learning of Graph Neural Networks with Guaranteed Generalizability:
One-hidden-layer Case [93.37576644429578]
グラフニューラルネットワーク(GNN)は、グラフ構造化データから実際に学習する上で、近年大きな進歩を遂げている。
回帰問題と二項分類問題の両方に隠れ層を持つGNNの理論的に基底的な一般化可能性解析を行う。
論文 参考訳(メタデータ) (2020-06-25T00:45:52Z) - Optimization and Generalization Analysis of Transduction through
Gradient Boosting and Application to Multi-scale Graph Neural Networks [60.22494363676747]
現在のグラフニューラルネットワーク(GNN)は、オーバースムーシング(over-smoothing)と呼ばれる問題のため、自分自身を深くするのは難しいことが知られている。
マルチスケールGNNは、オーバースムーシング問題を緩和するための有望なアプローチである。
マルチスケールGNNを含むトランスダクティブ学習アルゴリズムの最適化と一般化を保証する。
論文 参考訳(メタデータ) (2020-06-15T17:06:17Z) - Graph Neural Networks for Motion Planning [108.51253840181677]
低次元問題に対する高密度固定グラフ上のGNNと高次元問題に対するサンプリングベースGNNの2つの手法を提案する。
RRT(Rapidly-Exploring Random Trees)におけるクリティカルノードの特定やサンプリング分布の学習といった計画上の問題にGNNが取り組む能力について検討する。
臨界サンプリング、振り子、6つのDoFロボットアームによる実験では、GNNは従来の分析手法の改善だけでなく、完全に接続されたニューラルネットワークや畳み込みニューラルネットワークを用いた学習アプローチも示している。
論文 参考訳(メタデータ) (2020-06-11T08:19:06Z) - Binarized Graph Neural Network [65.20589262811677]
我々は二項化グラフニューラルネットワークを開発し、二項化ネットワークパラメータを用いてノードのバイナリ表現を学習する。
提案手法は既存のGNNベースの埋め込み手法にシームレスに統合できる。
実験により、提案された二項化グラフニューラルネットワーク、すなわちBGNは、時間と空間の両方の観点から、桁違いに効率的であることが示されている。
論文 参考訳(メタデータ) (2020-04-19T09:43:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。