Generalization by Recognizing Confusion
- URL: http://arxiv.org/abs/2006.07737v1
- Date: Sat, 13 Jun 2020 22:49:51 GMT
- Title: Generalization by Recognizing Confusion
- Authors: Daniel Chiu, Franklyn Wang, Scott Duke Kominers
- Abstract summary: Self-adaptive training technique augments modern neural networks by allowing them to adjust training labels on the fly.
By combining the self-adaptive objective with mixup, we further improve the accuracy of self-adaptive models for image recognition.
We find evidence that the Rademacher complexity of these algorithms is low, suggesting a new path towards provable generalization.
- Score: 3.018691733760647
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A recently-proposed technique called self-adaptive training augments modern
neural networks by allowing them to adjust training labels on the fly, to avoid
overfitting to samples that may be mislabeled or otherwise non-representative.
By combining the self-adaptive objective with mixup, we further improve the
accuracy of self-adaptive models for image recognition; the resulting
classifier obtains state-of-the-art accuracies on datasets corrupted with label
noise. Robustness to label noise implies a lower generalization gap; thus, our
approach also leads to improved generalizability. We find evidence that the
Rademacher complexity of these algorithms is low, suggesting a new path towards
provable generalization for this type of deep learning model. Last, we
highlight a novel connection between difficulties accounting for rare classes
and robustness under noise, as rare classes are in a sense indistinguishable
from label noise. Our code can be found at
https://github.com/Tuxianeer/generalizationconfusion.
Related papers
- ERASE: Error-Resilient Representation Learning on Graphs for Label Noise
Tolerance [53.73316938815873]
We propose a method called ERASE (Error-Resilient representation learning on graphs for lAbel noiSe tolerancE) to learn representations with error tolerance.
ERASE combines prototype pseudo-labels with propagated denoised labels and updates representations with error resilience.
Our method can outperform multiple baselines with clear margins in broad noise levels and enjoy great scalability.
arXiv Detail & Related papers (2023-12-13T17:59:07Z) - Label Noise: Correcting the Forward-Correction [0.0]
Training neural network classifiers on datasets with label noise poses a risk of overfitting them to the noisy labels.
We propose an approach to tackling overfitting caused by label noise.
Motivated by this observation, we propose imposing a lower bound on the training loss to mitigate overfitting.
arXiv Detail & Related papers (2023-07-24T19:41:19Z) - Learning with Noisy labels via Self-supervised Adversarial Noisy Masking [33.87292143223425]
We propose a novel training approach termed adversarial noisy masking.
It adaptively modulates the input data and label simultaneously, preventing the model to overfit noisy samples.
It is tested on both synthetic and real-world noisy datasets.
arXiv Detail & Related papers (2023-02-14T03:13:26Z) - Robust Training under Label Noise by Over-parameterization [41.03008228953627]
We propose a principled approach for robust training of over-parameterized deep networks in classification tasks where a proportion of training labels are corrupted.
The main idea is yet very simple: label noise is sparse and incoherent with the network learned from clean data, so we model the noise and learn to separate it from the data.
Remarkably, when trained using such a simple method in practice, we demonstrate state-of-the-art test accuracy against label noise on a variety of real datasets.
arXiv Detail & Related papers (2022-02-28T18:50:10Z) - Learning with Neighbor Consistency for Noisy Labels [69.83857578836769]
We present a method for learning from noisy labels that leverages similarities between training examples in feature space.
We evaluate our method on datasets evaluating both synthetic (CIFAR-10, CIFAR-100) and realistic (mini-WebVision, Clothing1M, mini-ImageNet-Red) noise.
arXiv Detail & Related papers (2022-02-04T15:46:27Z) - Prototypical Classifier for Robust Class-Imbalanced Learning [64.96088324684683]
We propose textitPrototypical, which does not require fitting additional parameters given the embedding network.
Prototypical produces balanced and comparable predictions for all classes even though the training set is class-imbalanced.
We test our method on CIFAR-10LT, CIFAR-100LT and Webvision datasets, observing that Prototypical obtains substaintial improvements compared with state of the arts.
arXiv Detail & Related papers (2021-10-22T01:55:01Z) - Robust Long-Tailed Learning under Label Noise [50.00837134041317]
This work investigates the label noise problem under long-tailed label distribution.
We propose a robust framework,algo, that realizes noise detection for long-tailed learning.
Our framework can naturally leverage semi-supervised learning algorithms to further improve the generalisation.
arXiv Detail & Related papers (2021-08-26T03:45:00Z) - Tackling Instance-Dependent Label Noise via a Universal Probabilistic
Model [80.91927573604438]
This paper proposes a simple yet universal probabilistic model, which explicitly relates noisy labels to their instances.
Experiments on datasets with both synthetic and real-world label noise verify that the proposed method yields significant improvements on robustness.
arXiv Detail & Related papers (2021-01-14T05:43:51Z) - Improving Generalization of Deep Fault Detection Models in the Presence
of Mislabeled Data [1.3535770763481902]
We propose a novel two-step framework for robust training with label noise.
In the first step, we identify outliers (including the mislabeled samples) based on the update in the hypothesis space.
In the second step, we propose different approaches to modifying the training data based on the identified outliers and a data augmentation technique.
arXiv Detail & Related papers (2020-09-30T12:33:25Z) - Consistency Regularization for Certified Robustness of Smoothed
Classifiers [89.72878906950208]
A recent technique of randomized smoothing has shown that the worst-case $ell$-robustness can be transformed into the average-case robustness.
We found that the trade-off between accuracy and certified robustness of smoothed classifiers can be greatly controlled by simply regularizing the prediction consistency over noise.
arXiv Detail & Related papers (2020-06-07T06:57:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.