論文の概要: Adversarial representation learning for synthetic replacement of private
attributes
- arxiv url: http://arxiv.org/abs/2006.08039v5
- Date: Mon, 8 Feb 2021 13:53:41 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-21 12:36:31.399346
- Title: Adversarial representation learning for synthetic replacement of private
attributes
- Title(参考訳): 個人属性の合成置換のための逆表現学習
- Authors: John Martinsson, Edvin Listo Zec, Daniel Gillblad, Olof Mogren
- Abstract要約: 第1ステップでは機密情報を除去し,第2ステップではこの情報を独立したランダムサンプルに置き換える,という2つのステップを含む,データ民営化のための新しいアプローチを提案する。
本手法は, より強い敵を騙すようにモデルを訓練することで, 強いプライバシを確保するために, 敵対表現学習を基盤としている。
- 参考スコア(独自算出の注目度): 0.7619404259039281
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Data privacy is an increasingly important aspect of many real-world Data
sources that contain sensitive information may have immense potential which
could be unlocked using the right privacy enhancing transformations, but
current methods often fail to produce convincing output. Furthermore, finding
the right balance between privacy and utility is often a tricky trade-off. In
this work, we propose a novel approach for data privatization, which involves
two steps: in the first step, it removes the sensitive information, and in the
second step, it replaces this information with an independent random sample.
Our method builds on adversarial representation learning which ensures strong
privacy by training the model to fool an increasingly strong adversary. While
previous methods only aim at obfuscating the sensitive information, we find
that adding new random information in its place strengthens the provided
privacy and provides better utility at any given level of privacy. The result
is an approach that can provide stronger privatization on image data, and yet
be preserving both the domain and the utility of the inputs, entirely
independent of the downstream task.
- Abstract(参考訳): データプライバシは、機密情報を含む多くの実世界のデータソースにとってますます重要な側面であり、適切なプライバシー強化変換を使用してロック解除される可能性がある。
さらに、プライバシーとユーティリティの適切なバランスを見つけることは、しばしばトリッキーなトレードオフである。
そこで本研究では,データ民営化のための新しい手法を提案する。第1段階ではセンシティブな情報を除去し,第2段階では,この情報を独立したランダムサンプルに置き換える。
本手法は,より強い敵を騙すようにモデルを訓練することで,強力なプライバシを確保する。
従来の手法では機密情報を隠蔽することのみを目標としているが,その場所に新たなランダム情報を加えることで,提供されるプライバシが強化され,任意のレベルのプライバシにおいてより優れたユーティリティが提供されることが判明した。
その結果、画像データに対してより強力な民営化を提供しながら、ダウンストリームタスクとは独立して、入力のドメインとユーティリティの両方を保存できるアプローチが実現した。
関連論文リスト
- Masked Differential Privacy [64.32494202656801]
本稿では,差分プライバシーを適用した機密領域を制御できる「マスク型差分プライバシー(DP)」という効果的なアプローチを提案する。
提案手法はデータに基づいて選択的に動作し,DPアプリケーションや差分プライバシーをデータサンプル内の他のプライバシー技術と組み合わせることなく,非感性時間領域を定義できる。
論文 参考訳(メタデータ) (2024-10-22T15:22:53Z) - $\alpha$-Mutual Information: A Tunable Privacy Measure for Privacy
Protection in Data Sharing [4.475091558538915]
本稿では, 有基の$alpha$-Mutual Informationを調整可能なプライバシ尺度として採用する。
我々は、プライバシ保護を提供するためにオリジナルのデータを操作するための一般的な歪みに基づくメカニズムを定式化する。
論文 参考訳(メタデータ) (2023-10-27T16:26:14Z) - PrivacyMind: Large Language Models Can Be Contextual Privacy Protection Learners [81.571305826793]
コンテキストプライバシ保護言語モデル(PrivacyMind)を紹介する。
我々の研究はモデル設計に関する理論的分析を提供し、様々な手法をベンチマークする。
特に、肯定的な例と否定的な例の両方による命令チューニングは、有望な方法である。
論文 参考訳(メタデータ) (2023-10-03T22:37:01Z) - A Unified View of Differentially Private Deep Generative Modeling [60.72161965018005]
プライバシー上の懸念のあるデータには、データアクセスとデータ共有を頻繁に禁止する厳格な規制が伴う。
これらの障害を克服することは、プライバシーに敏感なデータを含む多くの現実世界のアプリケーションシナリオにおいて、技術的進歩の鍵となる。
差分的プライベート(DP)データパブリッシングは、データの衛生化された形式のみを公開する、魅力的なソリューションを提供する。
論文 参考訳(メタデータ) (2023-09-27T14:38:16Z) - Position: Considerations for Differentially Private Learning with Large-Scale Public Pretraining [75.25943383604266]
大規模なWebスクレイプデータセットの使用は、差分プライバシ保存と見なすべきかどうかを疑問視する。
Webデータ上で事前訓練されたこれらのモデルを“プライベート”として公開することで、市民のプライバシーに対する信頼を意味のあるプライバシの定義として損なう可能性があることを警告します。
公的な事前学習がより普及し、強力になるにつれて、私的な学習分野への道のりを議論することで、我々は結論づける。
論文 参考訳(メタデータ) (2022-12-13T10:41:12Z) - Private Set Generation with Discriminative Information [63.851085173614]
異なるプライベートなデータ生成は、データプライバシの課題に対する有望な解決策である。
既存のプライベートな生成モデルは、合成サンプルの有用性に苦慮している。
我々は,最先端アプローチのサンプルユーティリティを大幅に改善する,シンプルで効果的な手法を提案する。
論文 参考訳(メタデータ) (2022-11-07T10:02:55Z) - Momentum Gradient Descent Federated Learning with Local Differential
Privacy [10.60240656423935]
ビッグデータの時代、個人情報のプライバシーはより顕著になった。
本稿では,機械学習モデルの性能向上のために,フェデレーション学習と局所差分プライバシーをモーメント勾配勾配下で統合することを提案する。
論文 参考訳(メタデータ) (2022-09-28T13:30:38Z) - Privacy-Preserving Distributed Expectation Maximization for Gaussian
Mixture Model using Subspace Perturbation [4.2698418800007865]
フェデレーション学習は、プライベートデータの送信を許可せず、中間更新のみを許可するため、プライバシー上の懸念によって動機付けられている。
我々は、各ステップの更新を安全に計算できる、完全に分散化されたプライバシ保存ソリューションを提案する。
数値検証により,提案手法は,精度とプライバシの両面において,既存手法よりも優れた性能を示した。
論文 参考訳(メタデータ) (2022-09-16T09:58:03Z) - Decouple-and-Sample: Protecting sensitive information in task agnostic
data release [17.398889291769986]
sanitizerはセキュアでタスクに依存しないデータリリースのためのフレームワークである。
機密情報をプライベートに合成できれば、より優れたプライバシーとユーティリティのトレードオフが達成できることを示す。
論文 参考訳(メタデータ) (2022-03-17T19:15:33Z) - InfoScrub: Towards Attribute Privacy by Targeted Obfuscation [77.49428268918703]
視覚データに流出した個人情報を個人が制限できる技術について検討する。
我々はこの問題を新しい画像難読化フレームワークで解決する。
提案手法では,元の入力画像に忠実な難読化画像を生成するとともに,非難読化画像に対して6.2$times$(または0.85bits)の不確実性を増大させる。
論文 参考訳(メタデータ) (2020-05-20T19:48:04Z) - Utility-aware Privacy-preserving Data Releasing [7.462336024223669]
本稿では2段階の摂動に基づくプライバシー保護データ公開フレームワークを提案する。
まず、特定の事前定義されたプライバシとユーティリティの問題がパブリックドメインデータから学習される。
そして、学習した知識を活用して、データ所有者のデータを民営化したデータに正確に摂動させます。
論文 参考訳(メタデータ) (2020-05-09T05:32:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。