論文の概要: Momentum Gradient Descent Federated Learning with Local Differential
Privacy
- arxiv url: http://arxiv.org/abs/2209.14086v1
- Date: Wed, 28 Sep 2022 13:30:38 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-29 17:38:45.179267
- Title: Momentum Gradient Descent Federated Learning with Local Differential
Privacy
- Title(参考訳): 局所的微分プライバシーを考慮した運動量勾配のフェデレート学習
- Authors: Mengde Han, Tianqing Zhu, Wanlei Zhou
- Abstract要約: ビッグデータの時代、個人情報のプライバシーはより顕著になった。
本稿では,機械学習モデルの性能向上のために,フェデレーション学習と局所差分プライバシーをモーメント勾配勾配下で統合することを提案する。
- 参考スコア(独自算出の注目度): 10.60240656423935
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Nowadays, the development of information technology is growing rapidly. In
the big data era, the privacy of personal information has been more pronounced.
The major challenge is to find a way to guarantee that sensitive personal
information is not disclosed while data is published and analyzed. Centralized
differential privacy is established on the assumption of a trusted third-party
data curator. However, this assumption is not always true in reality. As a new
privacy preservation model, local differential privacy has relatively strong
privacy guarantees. Although federated learning has relatively been a
privacy-preserving approach for distributed learning, it still introduces
various privacy concerns. To avoid privacy threats and reduce communication
costs, in this article, we propose integrating federated learning and local
differential privacy with momentum gradient descent to improve the performance
of machine learning models.
- Abstract(参考訳): 近年,情報技術の発展が急速に進んでいる。
ビッグデータ時代には、個人情報のプライバシーがより明確になっている。
最大の課題は、データが公開され分析される間、機密性の高い個人情報が開示されないことを保証する方法を見つけることである。
集中型差分プライバシーは、信頼できるサードパーティのデータキュレーターの仮定に基づいて確立される。
しかし、実際にはこの仮定は必ずしも真とは限らない。
新しいプライバシー保護モデルとして、ローカルの差分プライバシーは比較的強力なプライバシー保証を持っている。
連合学習は分散学習におけるプライバシ保護のアプローチとして比較的一般的だが,それでもさまざまなプライバシ上の懸念を提起している。
プライバシの脅威を回避し,通信コストを削減するため,本論文では,機械学習モデルの性能向上のために,フェデレーション学習と局所差分プライバシをモーメント勾配勾配下で統合することを提案する。
関連論文リスト
- Masked Differential Privacy [64.32494202656801]
本稿では,差分プライバシーを適用した機密領域を制御できる「マスク型差分プライバシー(DP)」という効果的なアプローチを提案する。
提案手法はデータに基づいて選択的に動作し,DPアプリケーションや差分プライバシーをデータサンプル内の他のプライバシー技術と組み合わせることなく,非感性時間領域を定義できる。
論文 参考訳(メタデータ) (2024-10-22T15:22:53Z) - Models Matter: Setting Accurate Privacy Expectations for Local and Central Differential Privacy [14.40391109414476]
局所モデルと中心モデルにおける差分プライバシーの新たな説明を設計・評価する。
我々は、プライバシー栄養ラベルのスタイルにおける結果に焦点を当てた説明が、正確なプライバシー期待を設定するための有望なアプローチであることに気付きました。
論文 参考訳(メタデータ) (2024-08-16T01:21:57Z) - Secure Aggregation is Not Private Against Membership Inference Attacks [66.59892736942953]
フェデレーション学習におけるSecAggのプライバシーへの影響について検討する。
SecAggは、単一のトレーニングラウンドであっても、メンバシップ推論攻撃に対して弱いプライバシを提供します。
以上の結果から,ノイズ注入などの付加的なプライバシー強化機構の必要性が浮き彫りになった。
論文 参考訳(メタデータ) (2024-03-26T15:07:58Z) - Federated Transfer Learning with Differential Privacy [21.50525027559563]
我々は、信頼された中央サーバを仮定することなく、各データセットに対するプライバシー保証を提供する、テキストフェデレーションによる差分プライバシーの概念を定式化する。
フェデレートされた差分プライバシは、確立されたローカルと中央の差分プライバシモデルの間の中間プライバシモデルであることを示す。
論文 参考訳(メタデータ) (2024-03-17T21:04:48Z) - A Unified View of Differentially Private Deep Generative Modeling [60.72161965018005]
プライバシー上の懸念のあるデータには、データアクセスとデータ共有を頻繁に禁止する厳格な規制が伴う。
これらの障害を克服することは、プライバシーに敏感なデータを含む多くの現実世界のアプリケーションシナリオにおいて、技術的進歩の鍵となる。
差分的プライベート(DP)データパブリッシングは、データの衛生化された形式のみを公開する、魅力的なソリューションを提供する。
論文 参考訳(メタデータ) (2023-09-27T14:38:16Z) - Position: Considerations for Differentially Private Learning with Large-Scale Public Pretraining [75.25943383604266]
大規模なWebスクレイプデータセットの使用は、差分プライバシ保存と見なすべきかどうかを疑問視する。
Webデータ上で事前訓練されたこれらのモデルを“プライベート”として公開することで、市民のプライバシーに対する信頼を意味のあるプライバシの定義として損なう可能性があることを警告します。
公的な事前学習がより普及し、強力になるにつれて、私的な学習分野への道のりを議論することで、我々は結論づける。
論文 参考訳(メタデータ) (2022-12-13T10:41:12Z) - How Do Input Attributes Impact the Privacy Loss in Differential Privacy? [55.492422758737575]
DPニューラルネットワークにおけるオブジェクトごとの規範と個人のプライバシ損失との関係について検討する。
プライバシ・ロス・インプット・サセプティビリティ(PLIS)と呼ばれる新しい指標を導入し、被験者のプライバシ・ロスを入力属性に適応させることを可能にした。
論文 参考訳(メタデータ) (2022-11-18T11:39:03Z) - On Privacy and Confidentiality of Communications in Organizational
Graphs [3.5270468102327004]
この研究は、企業コンテキストにおける機密性とプライバシの区別方法を示している。
それは、機密性を維持するためのアプローチを定式化し、差分プライバシーの原則を活用することを目的としている。
論文 参考訳(メタデータ) (2021-05-27T19:45:56Z) - Federated $f$-Differential Privacy [19.499120576896228]
フェデレートラーニング(Federated Learning, FL)とは、クライアントが繰り返し情報を共有することによってモデルを学ぶ訓練パラダイムである。
フェデレーション設定に特化した新しい概念である、フェデレーション$f$-differenceプライバシを紹介します。
そこで我々は,最先端flアルゴリズムの大規模ファミリーに対応する汎用的federated learningフレームワークprifedsyncを提案する。
論文 参考訳(メタデータ) (2021-02-22T16:28:21Z) - Private Reinforcement Learning with PAC and Regret Guarantees [69.4202374491817]
エピソード強化学習(RL)のためのプライバシー保護探索ポリシーを設計する。
まず、共同微分プライバシー(JDP)の概念を用いた有意義なプライバシー定式化を提供する。
そこで我々は,強いPACと後悔境界を同時に達成し,JDP保証を享受する,プライベートな楽観主義に基づく学習アルゴリズムを開発した。
論文 参考訳(メタデータ) (2020-09-18T20:18:35Z) - LDP-FL: Practical Private Aggregation in Federated Learning with Local
Differential Privacy [20.95527613004989]
フェデレーション学習は、実際のデータではなく、局所的な勾配情報を収集するプライバシー保護のための一般的なアプローチである。
それまでの作業は3つの問題により現実的な解決には至らなかった。
最後に、ディープラーニングモデルにおける重みの高次元性により、プライバシー予算が爆発的に膨らみます。
論文 参考訳(メタデータ) (2020-07-31T01:08:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。