論文の概要: Filter design for small target detection on infrared imagery using
normalized-cross-correlation layer
- arxiv url: http://arxiv.org/abs/2006.08162v1
- Date: Mon, 15 Jun 2020 06:46:08 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-21 04:26:10.400291
- Title: Filter design for small target detection on infrared imagery using
normalized-cross-correlation layer
- Title(参考訳): 正規化クロス相関層を用いた赤外画像の小さなターゲット検出のためのフィルタ設計
- Authors: H. Se\c{c}kin Demir and Erdem Akagunduz
- Abstract要約: 赤外線小ターゲット検出フィルタの設計問題に対する機械学習手法を提案する。
ニューラルネットワークの畳み込み層と同様に、正規化された相互相関層が提案される。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we introduce a machine learning approach to the problem of
infrared small target detection filter design. For this purpose, similarly to a
convolutional layer of a neural network, the normalized-cross-correlational
(NCC) layer, which we utilize for designing a target detection/recognition
filter bank, is proposed. By employing the NCC layer in a neural network
structure, we introduce a framework, in which supervised training is used to
calculate the optimal filter shape and the optimum number of filters required
for a specific target detection/recognition task on infrared images. We also
propose the mean-absolute-deviation NCC (MAD-NCC) layer, an efficient
implementation of the proposed NCC layer, designed especially for FPGA systems,
in which square root operations are avoided for real-time computation. As a
case study we work on dim-target detection on mid-wave infrared imagery and
obtain the filters that can discriminate a dim target from various types of
background clutter, specific to our operational concept.
- Abstract(参考訳): 本稿では,赤外線小型ターゲット検出フィルタの設計問題に対する機械学習手法を提案する。
この目的のために,ニューラルネットワークの畳み込み層と同様に,ターゲット検出・認識フィルタバンクの設計に利用する正規化クロス相関(ncc)層を提案する。
ニューラルネットワーク構造にNCC層を用いることで、赤外線画像上の特定の目標検出/認識タスクに必要なフィルタの最適なフィルタ形状と最適なフィルタ数を計算するための教師付きトレーニングを行うフレームワークを導入する。
また,実時間計算のために平方根演算を回避したFPGAシステムにおいて,提案したNCC層を効率よく実装したMAD-NCC層を提案する。
本研究では,中波長赤外画像におけるディムターゲット検出について検討し,動作コンセプトに特有な種々の背景クラッタからディムターゲットを識別できるフィルタについて検討する。
関連論文リスト
- Infrared Small Target Detection based on Adjustable Sensitivity Strategy and Multi-Scale Fusion [2.661766509317245]
調整可能な感度(AS)戦略とマルチスケール融合に基づく改良された赤外線小ターゲット検出手法を提案する。
具体的には、マルチスケール方向対応ネットワーク(MSDA-Net)に基づくマルチスケールモデル融合フレームワークを構築する。
このスキームは、PRCV 2024ワイドエリア赤外線小目標検出競技で優勝した。
論文 参考訳(メタデータ) (2024-07-29T15:22:02Z) - RPCANet: Deep Unfolding RPCA Based Infrared Small Target Detection [10.202639589226076]
この研究は、RPCANetと呼ばれる赤外線ディムターゲットを検出するための解釈可能なディープネットワークを提案する。
提案手法では, ISTDタスクをスパースターゲット抽出, 低ランク背景推定, 画像再構成として定式化する。
反復最適化の更新ステップをディープラーニングフレームワークに展開することにより、時間を要する複雑な行列計算を理論誘導ニューラルネットワークに置き換える。
論文 参考訳(メタデータ) (2023-11-02T01:21:12Z) - MPANet: Multi-Patch Attention For Infrared Small Target object Detection [11.437699171778544]
赤外線小目標検出(ISTD)が注目され,様々な分野に応用されている。
赤外線ターゲットの小型化と複雑な背景からのノイズ干渉のため、畳み込みニューラルネットワーク(CNN)を用いたISTDの性能は制限されている。
軸アテンションエンコーダとマルチスケールパッチブランチ(MSPB)構造に基づくマルチパッチアテンションネットワーク(MPANet)を提案する。
論文 参考訳(メタデータ) (2022-06-05T08:01:38Z) - TSG: Target-Selective Gradient Backprop for Probing CNN Visual Saliency [72.9106103283475]
我々は、畳み込みニューラルネットワークを解釈するために視覚的サリエンシ、すなわち視覚的説明について研究する。
これらの観測に触発されて、我々はTSG(Target-Selective Gradient)バックプロップと呼ばれる新しいビジュアル・サリエンシ・フレームワークを提案する。
提案したTSGはTSG-ConvとTSG-FCの2つのコンポーネントから構成され、それぞれ畳み込み層と完全連結層の勾配を補正する。
論文 参考訳(メタデータ) (2021-10-11T12:00:20Z) - Infrared Small-Dim Target Detection with Transformer under Complex
Backgrounds [155.388487263872]
変換器を用いた赤外線小径目標検出手法を提案する。
画像特徴の相互作用情報をより広い範囲で学習するために,変換器の自己認識機構を採用する。
最小限のターゲットの機能を学習するための機能拡張モジュールも設計しています。
論文 参考訳(メタデータ) (2021-09-29T12:23:41Z) - DNN-Based Topology Optimisation: Spatial Invariance and Neural Tangent
Kernel [7.106986689736828]
完全に接続されたニューラルネットワークによって生成される密度場を用いてSIMP法について検討し,その座標を入力とする。
我々は,DNNの使用が従来のSIMPのフィルタリング手法と類似したフィルタリング効果をもたらすことを示し,ニューラル・タンジェント・カーネル(NTK)によるフィルタについて述べる。
論文 参考訳(メタデータ) (2021-06-10T12:49:55Z) - Unsharp Mask Guided Filtering [53.14430987860308]
本論文の目的は,フィルタ中の構造伝達の重要性を強調した画像フィルタリングである。
アンシャープマスキングにインスパイアされたガイドフィルタの新しい簡易な定式化を提案する。
我々の定式化は低域フィルタに先立ってフィルタを楽しみ、単一の係数を推定することで明示的な構造伝達を可能にする。
論文 参考訳(メタデータ) (2021-06-02T19:15:34Z) - SCOP: Scientific Control for Reliable Neural Network Pruning [127.20073865874636]
本稿では,科学的制御を設定することにより,信頼性の高いニューラルネットワークプルーニングアルゴリズムを提案する。
冗長フィルタは、異なる特徴の逆数過程において発見できる。
提案手法では,ResNet-101のパラメータ57.8%,FLOP60.2%を削減できる。
論文 参考訳(メタデータ) (2020-10-21T03:02:01Z) - Network Adjustment: Channel Search Guided by FLOPs Utilization Ratio [101.84651388520584]
本稿では,ネットワークの精度をFLOPの関数として考慮した,ネットワーク調整という新しいフレームワークを提案する。
標準画像分類データセットと幅広いベースネットワークの実験は、我々のアプローチの有効性を実証している。
論文 参考訳(メタデータ) (2020-04-06T15:51:00Z) - Depthwise Non-local Module for Fast Salient Object Detection Using a
Single Thread [136.2224792151324]
本稿では,高速な物体検出のための新しいディープラーニングアルゴリズムを提案する。
提案アルゴリズムは,1つのCPUスレッドと同時に,競合精度と高い推論効率を実現する。
論文 参考訳(メタデータ) (2020-01-22T15:23:48Z) - TBC-Net: A real-time detector for infrared small target detection using
semantic constraint [18.24737906712967]
深層学習は、小さな目標特徴の学習が困難であるため、赤外線小目標検出にはほとんど使われない。
赤外線小ターゲット検出のための新しい軽量畳み込みニューラルネットワークTBC-Netを提案する。
論文 参考訳(メタデータ) (2019-12-27T05:25:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。