論文の概要: MPANet: Multi-Patch Attention For Infrared Small Target object Detection
- arxiv url: http://arxiv.org/abs/2206.02120v1
- Date: Sun, 5 Jun 2022 08:01:38 GMT
- ステータス: 処理完了
- システム内更新日: 2022-06-07 16:19:29.061066
- Title: MPANet: Multi-Patch Attention For Infrared Small Target object Detection
- Title(参考訳): MPANet: 赤外線小ターゲット検出のためのマルチパッチアテンション
- Authors: Ao Wang, Wei Li, Xin Wu, Zhanchao Huang, and Ran Tao
- Abstract要約: 赤外線小目標検出(ISTD)が注目され,様々な分野に応用されている。
赤外線ターゲットの小型化と複雑な背景からのノイズ干渉のため、畳み込みニューラルネットワーク(CNN)を用いたISTDの性能は制限されている。
軸アテンションエンコーダとマルチスケールパッチブランチ(MSPB)構造に基づくマルチパッチアテンションネットワーク(MPANet)を提案する。
- 参考スコア(独自算出の注目度): 11.437699171778544
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Infrared small target detection (ISTD) has attracted widespread attention and
been applied in various fields. Due to the small size of infrared targets and
the noise interference from complex backgrounds, the performance of ISTD using
convolutional neural networks (CNNs) is restricted. Moreover, the constriant
that long-distance dependent features can not be encoded by the vanilla CNNs
also impairs the robustness of capturing targets' shapes and locations in
complex scenarios. To this end, a multi-patch attention network (MPANet) based
on the axial-attention encoder and the multi-scale patch branch (MSPB)
structure is proposed. Specially, an axial-attention-improved encoder
architecture is designed to highlight the effective features of small targets
and suppress background noises. Furthermore, the developed MSPB structure fuses
the coarse-grained and fine-grained features from different semantic scales.
Extensive experiments on the SIRST dataset show the superiority performance and
effectiveness of the proposed MPANet compared to the state-of-the-art methods.
- Abstract(参考訳): 赤外線小目標検出(ISTD)が注目され,様々な分野に応用されている。
赤外線ターゲットの小型化と複雑な背景からのノイズ干渉のため、畳み込みニューラルネットワーク(CNN)を用いたISTDの性能は制限されている。
さらに、長距離依存特徴をバニラcnnで符号化できないという構成主義者は、複雑なシナリオにおいてターゲットの形状や位置を捕捉する強固さを損なう。
この目的のために、アキシャルアテンションエンコーダとマルチスケールパッチブランチ(MSPB)構造に基づくマルチパッチアテンションネットワーク(MPANet)を提案する。
特に、アキシャルアテンション改善エンコーダアーキテクチャは、小さなターゲットの効果的な特徴を強調し、背景雑音を抑制するように設計されている。
さらに、開発したMSPB構造は、様々な意味尺度から粗くきめ細かな特徴を融合させる。
SIRSTデータセットの大規模な実験は、提案したMPANetの最先端手法よりも優れた性能と有効性を示している。
関連論文リスト
- Renormalized Connection for Scale-preferred Object Detection in Satellite Imagery [51.83786195178233]
我々は、効率的な特徴抽出の観点から再正規化群理論を実装するために、知識発見ネットワーク(KDN)を設計する。
KDN上の再正規化接続(RC)は、マルチスケール特徴の「相乗的焦点」を可能にする。
RCはFPNベースの検出器のマルチレベル特徴の分割・対数機構を幅広いスケールで予測されたタスクに拡張する。
論文 参考訳(メタデータ) (2024-09-09T13:56:22Z) - Infrared Small Target Detection based on Adjustable Sensitivity Strategy and Multi-Scale Fusion [2.661766509317245]
調整可能な感度(AS)戦略とマルチスケール融合に基づく改良された赤外線小ターゲット検出手法を提案する。
具体的には、マルチスケール方向対応ネットワーク(MSDA-Net)に基づくマルチスケールモデル融合フレームワークを構築する。
このスキームは、PRCV 2024ワイドエリア赤外線小目標検出競技で優勝した。
論文 参考訳(メタデータ) (2024-07-29T15:22:02Z) - Multi-Scale Direction-Aware Network for Infrared Small Target Detection [2.661766509317245]
赤外小目標検出は、背景とターゲットを効果的に分離することが難しい問題に直面している。
我々は、赤外線小ターゲットの高周波方向特徴を統合するためのマルチスケール方向対応ネットワーク(MSDA-Net)を提案する。
MSDA-Netは、パブリックNUDT-SIRST、SIRST、IRSTD-1kデータセット上で、最先端(SOTA)結果を達成する。
論文 参考訳(メタデータ) (2024-06-04T07:23:09Z) - RPCANet: Deep Unfolding RPCA Based Infrared Small Target Detection [10.202639589226076]
この研究は、RPCANetと呼ばれる赤外線ディムターゲットを検出するための解釈可能なディープネットワークを提案する。
提案手法では, ISTDタスクをスパースターゲット抽出, 低ランク背景推定, 画像再構成として定式化する。
反復最適化の更新ステップをディープラーニングフレームワークに展開することにより、時間を要する複雑な行列計算を理論誘導ニューラルネットワークに置き換える。
論文 参考訳(メタデータ) (2023-11-02T01:21:12Z) - Small Object Detection via Coarse-to-fine Proposal Generation and
Imitation Learning [52.06176253457522]
本稿では,粗粒度パイプラインと特徴模倣学習に基づく小型物体検出に適した2段階フレームワークを提案する。
CFINetは、大規模な小さなオブジェクト検出ベンチマークであるSODA-DとSODA-Aで最先端の性能を達成する。
論文 参考訳(メタデータ) (2023-08-18T13:13:09Z) - SAR Despeckling Using Overcomplete Convolutional Networks [53.99620005035804]
スペックルはSAR画像を劣化させるため、リモートセンシングにおいて重要な問題である。
近年の研究では、畳み込みニューラルネットワーク(CNN)が古典的解法よりも優れていることが示されている。
本研究は、受容場を制限することで低レベルの特徴を学習することに集中するために、過剰なCNNアーキテクチャを用いる。
本稿では,合成および実SAR画像の非特定化手法と比較して,提案手法により非特定化性能が向上することを示す。
論文 参考訳(メタデータ) (2022-05-31T15:55:37Z) - RRNet: Relational Reasoning Network with Parallel Multi-scale Attention
for Salient Object Detection in Optical Remote Sensing Images [82.1679766706423]
光リモートセンシング画像(RSI)のためのSODは、光学RSIから視覚的に特徴的な物体や領域を探索・抽出することを目的としている。
光学RSIにおけるSODに並列なマルチスケールアテンションを持つリレーショナル推論ネットワークを提案する。
提案するRRNetは,既存の最先端SODコンペティタよりも質的,定量的に優れている。
論文 参考訳(メタデータ) (2021-10-27T07:18:32Z) - Infrared Small-Dim Target Detection with Transformer under Complex
Backgrounds [155.388487263872]
変換器を用いた赤外線小径目標検出手法を提案する。
画像特徴の相互作用情報をより広い範囲で学習するために,変換器の自己認識機構を採用する。
最小限のターゲットの機能を学習するための機能拡張モジュールも設計しています。
論文 参考訳(メタデータ) (2021-09-29T12:23:41Z) - Dense Nested Attention Network for Infrared Small Target Detection [36.654692765557726]
単一フレーム赤外線小ターゲット(SIRST)検出は、小さなターゲットを乱雑な背景から分離することを目的としている。
既存のCNNベースのメソッドは、赤外線小ターゲットに対して直接適用することはできない。
本稿では,高密度ネステッドアテンションネットワーク(DNANet)を提案する。
論文 参考訳(メタデータ) (2021-06-01T13:45:35Z) - Attentional Local Contrast Networks for Infrared Small Target Detection [15.882749652217653]
赤外線小目標検出のための新しいモデル駆動深層ネットワークを提案する。
従来の局所コントラスト測定法を、エンドツーエンドネットワークにおける深さ自在なパラメータレス非線形特徴精製層としてモジュール化します。
ネットワークアーキテクチャの各コンポーネントの有効性と効率を実証的に検証するために,ネットワーク奥行きの異なる詳細なアブレーション研究を行う。
論文 参考訳(メタデータ) (2020-12-15T19:33:09Z) - Depthwise Non-local Module for Fast Salient Object Detection Using a
Single Thread [136.2224792151324]
本稿では,高速な物体検出のための新しいディープラーニングアルゴリズムを提案する。
提案アルゴリズムは,1つのCPUスレッドと同時に,競合精度と高い推論効率を実現する。
論文 参考訳(メタデータ) (2020-01-22T15:23:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。