論文の概要: EEG-GNN: Graph Neural Networks for Classification of
Electroencephalogram (EEG) Signals
- arxiv url: http://arxiv.org/abs/2106.09135v1
- Date: Wed, 16 Jun 2021 21:19:12 GMT
- ステータス: 処理完了
- システム内更新日: 2021-06-18 15:40:33.677580
- Title: EEG-GNN: Graph Neural Networks for Classification of
Electroencephalogram (EEG) Signals
- Title(参考訳): EEG-GNN:脳波信号の分類のためのグラフニューラルネットワーク
- Authors: Andac Demir, Toshiaki Koike-Akino, Ye Wang, Masaki Haruna, Deniz
Erdogmus
- Abstract要約: 畳み込みニューラルネットワーク(CNN)は脳波(EEG)から主観的不変の特徴を抽出するために頻繁に用いられる。
電極部位の機能的ネットワークに対する2次元グリッド型入力に適用される畳み込みとプーリングの概念を調整することにより、この制限を克服する。
我々は,グラフのノードに電極を投影する様々なグラフニューラルネットワーク(GNN)モデルを開発し,ノードの特徴を試行錯誤時に収集したEEGチャネルのサンプルとして表現し,ノードを重み付き/非重み付きエッジで接続する。
- 参考スコア(独自算出の注目度): 20.991468018187362
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Convolutional neural networks (CNN) have been frequently used to extract
subject-invariant features from electroencephalogram (EEG) for classification
tasks. This approach holds the underlying assumption that electrodes are
equidistant analogous to pixels of an image and hence fails to explore/exploit
the complex functional neural connectivity between different electrode sites.
We overcome this limitation by tailoring the concepts of convolution and
pooling applied to 2D grid-like inputs for the functional network of electrode
sites. Furthermore, we develop various graph neural network (GNN) models that
project electrodes onto the nodes of a graph, where the node features are
represented as EEG channel samples collected over a trial, and nodes can be
connected by weighted/unweighted edges according to a flexible policy
formulated by a neuroscientist. The empirical evaluations show that our
proposed GNN-based framework outperforms standard CNN classifiers across ErrP,
and RSVP datasets, as well as allowing neuroscientific interpretability and
explainability to deep learning methods tailored to EEG related classification
problems. Another practical advantage of our GNN-based framework is that it can
be used in EEG channel selection, which is critical for reducing computational
cost, and designing portable EEG headsets.
- Abstract(参考訳): 畳み込みニューラルネットワーク(CNN)は脳波(EEG)から主観的不変の特徴を抽出するために頻繁に用いられている。
このアプローチは、電極が画像の画素と等距離に類似しているという前提を保ち、異なる電極部位間の複雑な機能的神経接続を探索・探索することができない。
電極部位の機能的ネットワークに対する2次元グリッド型入力に適用される畳み込みとプーリングの概念を調整することにより、この制限を克服する。
さらに,グラフのノードに電極を投影するグラフニューラルネットワーク(GNN)モデルを開発し,ノードの特徴を試行錯誤で収集したEEGチャネルのサンプルとして表現し,神経科学者が定式化したフレキシブルポリシーに従って,ノードを重み付きエッジで接続する。
実験結果から,本フレームワークはerrp,rsvpのデータセットにまたがる標準cnn分類器よりも優れており,脳波関連分類問題に適応した深層学習法に対して,神経科学的解釈可能性と説明可能性も有意であった。
GNNベースのフレームワークのもう1つの実用上の利点は、計算コストの削減とポータブルなEEGヘッドセットの設計において重要なEEGチャネル選択に使用できることである。
関連論文リスト
- Advancing Spiking Neural Networks for Sequential Modeling with Central Pattern Generators [47.371024581669516]
スパイキングニューラルネットワーク(SNN)は、人工ニューラルネットワークを開発するための有望なアプローチである。
SNNをテキスト分類や時系列予測といったシーケンシャルなタスクに適用することは、効果的でハードウェアフレンドリーなスパイク形式の位置符号化戦略を作成するという課題によって妨げられている。
CPG-PEと呼ばれる新しいSNNのためのPE手法を提案する。我々は、一般的に使われているsinusoidal PEが、数学的に特定のCPGの膜電位ダイナミクスの特定の解であることを実証する。
論文 参考訳(メタデータ) (2024-05-23T09:39:12Z) - Dynamic GNNs for Precise Seizure Detection and Classification from EEG Data [6.401370088497331]
本稿では,脳波の位置と対応する脳領域のセマンティクスの相互作用を捉える動的グラフニューラルネットワーク(GNN)フレームワークであるNeuroGNNを紹介する。
実世界のデータを用いた実験により、NeuroGNNは既存の最先端モデルよりも大幅に優れていることが示された。
論文 参考訳(メタデータ) (2024-05-08T21:36:49Z) - Cell Graph Transformer for Nuclei Classification [78.47566396839628]
我々は,ノードとエッジを入力トークンとして扱うセルグラフ変換器(CGT)を開発した。
不愉快な特徴は、騒々しい自己注意スコアと劣等な収束につながる可能性がある。
グラフ畳み込みネットワーク(GCN)を利用して特徴抽出器を学習する新しいトポロジ対応事前学習法を提案する。
論文 参考訳(メタデータ) (2024-02-20T12:01:30Z) - Graph Neural Network-based EEG Classification: A Survey [10.683106842552657]
グラフニューラルネットワーク(GNN)は、感情認識などのタスクの脳波の分類にますます使われている。
この話題に関する論文を網羅的に検索し、比較のためのいくつかのカテゴリを導出する。
以上の結果から,脳波分類に対するGNNベースのアプローチの出現傾向を要約した。
論文 参考訳(メタデータ) (2023-10-03T15:40:03Z) - EEGSN: Towards Efficient Low-latency Decoding of EEG with Graph Spiking
Neural Networks [4.336065967298193]
ほとんどのニューラルネットワーク(SNN)は、低レイテンシと電力効率を必要とするいくつかの重要なタスクに必ずしも適合しない誘導バイアスに基づいてトレーニングされている。
本稿では、分散脳波センサに存在する動的関係情報を学習する多チャンネル脳波分類(EEGS)のためのグラフスパイクニューラルアーキテクチャを提案する。
提案手法は,従来のSNNと比較して,推定計算の複雑さを20ドル程度削減し,モータ実行タスクにおいて同等の精度を達成した。
論文 参考訳(メタデータ) (2023-04-15T23:30:17Z) - EEG-BBNet: a Hybrid Framework for Brain Biometric using Graph
Connectivity [1.1498015270151059]
我々は、畳み込みニューラルネットワーク(CNN)とグラフ畳み込みニューラルネットワーク(GCNN)を統合するハイブリッドネットワークであるEEG-BBNetを提案する。
我々のモデルは、イベント関連電位(ERP)タスクにおけるすべてのベースラインを、セッション内データを用いて平均99.26%の正確な認識率で上回ります。
論文 参考訳(メタデータ) (2022-08-17T10:18:22Z) - A Unified View on Graph Neural Networks as Graph Signal Denoising [49.980783124401555]
グラフニューラルネットワーク(GNN)は,グラフ構造化データの学習表現において顕著に普及している。
本研究では,代表的GNNモデル群における集約過程を,グラフ記述問題の解法とみなすことができることを数学的に確立する。
UGNNから派生した新しいGNNモデルADA-UGNNをインスタンス化し、ノード間の適応的滑らかさでグラフを処理する。
論文 参考訳(メタデータ) (2020-10-05T04:57:18Z) - GCNs-Net: A Graph Convolutional Neural Network Approach for Decoding
Time-resolved EEG Motor Imagery Signals [8.19994663278877]
グラフ畳み込みニューラルネットワーク(GCN)に基づく新しいディープラーニングフレームワークを提案し,生の脳波信号の復号性能を向上させる。
導入されたアプローチは、パーソナライズされた予測とグループ的な予測の両方に収束することが示されている。
論文 参考訳(メタデータ) (2020-06-16T04:57:12Z) - Stochastic Graph Neural Networks [123.39024384275054]
グラフニューラルネットワーク(GNN)は、分散エージェント調整、制御、計画に応用したグラフデータの非線形表現をモデル化する。
現在のGNNアーキテクチャは理想的なシナリオを前提として,環境やヒューマンファクタ,あるいは外部攻撃によるリンク変動を無視している。
これらの状況において、GNNは、トポロジカルなランダム性を考慮していない場合、その分散タスクに対処することができない。
論文 参考訳(メタデータ) (2020-06-04T08:00:00Z) - Binarized Graph Neural Network [65.20589262811677]
我々は二項化グラフニューラルネットワークを開発し、二項化ネットワークパラメータを用いてノードのバイナリ表現を学習する。
提案手法は既存のGNNベースの埋め込み手法にシームレスに統合できる。
実験により、提案された二項化グラフニューラルネットワーク、すなわちBGNは、時間と空間の両方の観点から、桁違いに効率的であることが示されている。
論文 参考訳(メタデータ) (2020-04-19T09:43:14Z) - Understanding Graph Isomorphism Network for rs-fMRI Functional
Connectivity Analysis [49.05541693243502]
グラフ同型ネットワーク(GIN)を用いてfMRIデータを解析するフレームワークを開発する。
本稿では,GINがグラフ空間における畳み込みニューラルネットワーク(CNN)の二重表現であることを示す。
我々は,提案したGINをワンホット符号化で調整するGNNに対して,CNNベースのサリエンシマップ技術を利用する。
論文 参考訳(メタデータ) (2020-01-10T23:40:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。