論文の概要: Additive Poisson Process: Learning Intensity of Higher-Order Interaction
in Stochastic Processes
- arxiv url: http://arxiv.org/abs/2006.08982v1
- Date: Tue, 16 Jun 2020 08:25:36 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-20 19:19:07.801816
- Title: Additive Poisson Process: Learning Intensity of Higher-Order Interaction
in Stochastic Processes
- Title(参考訳): 付加ポアソン過程:確率過程における高次相互作用の学習強度
- Authors: Simon Luo, Feng Zhou, Lamiae Azizi and Mahito Sugiyama
- Abstract要約: 低次元射影を用いたプロセスにおける強度関数の高次相互作用効果をモデル化できる新しいフレームワークであるAdditive Poisson Process(APP)を提案する。
我々のモデルは、統計多様体上の高階相互作用をモデル化するための情報幾何学の技法と、次元の呪いの影響を克服するために低次元射影を使用する一般化加法モデルを組み合わせる。
- 参考スコア(独自算出の注目度): 10.439638982101181
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present the Additive Poisson Process (APP), a novel framework that can
model the higher-order interaction effects of the intensity functions in
stochastic processes using lower dimensional projections. Our model combines
the techniques in information geometry to model higher-order interactions on a
statistical manifold and in generalized additive models to use
lower-dimensional projections to overcome the effects from the curse of
dimensionality. Our approach solves a convex optimization problem by minimizing
the KL divergence from a sample distribution in lower dimensional projections
to the distribution modeled by an intensity function in the stochastic process.
Our empirical results show that our model is able to use samples observed in
the lower dimensional space to estimate the higher-order intensity function
with extremely sparse observations.
- Abstract(参考訳): 低次元射影を用いた確率過程における強度関数の高次相互作用効果をモデル化できる新しいフレームワークであるAdditive Poisson Process(APP)を提案する。
本モデルは,統計多様体上の高次相互作用をモデル化するために情報幾何学の手法と,次元の呪いによる効果を克服するために低次元射影を用いる一般化加法モデルを組み合わせたものである。
低次元射影におけるサンプル分布から確率過程における強度関数によってモデル化された分布へのklの発散を最小化し,凸最適化問題を解く。
実験結果から,我々は低次元空間で観測された試料を用いて,非常に少ない観測で高次強度関数を推定できることを示した。
関連論文リスト
- On the Trajectory Regularity of ODE-based Diffusion Sampling [79.17334230868693]
拡散に基づく生成モデルは微分方程式を用いて、複素データ分布と抽出可能な事前分布の間の滑らかな接続を確立する。
本稿では,拡散モデルのODEに基づくサンプリングプロセスにおいて,いくつかの興味深い軌道特性を同定する。
論文 参考訳(メタデータ) (2024-05-18T15:59:41Z) - Probabilistic Reduced-Dimensional Vector Autoregressive Modeling with
Oblique Projections [0.7614628596146602]
雑音データから低次元ダイナミクスを抽出する低次元ベクトル自己回帰モデルを提案する。
最適斜め分解は、予測誤差の共分散に関する最良の予測可能性のために導出される。
合成ロレンツシステムとイーストマンケミカルの工業プロセスのデータセットを用いて,提案手法の優れた性能と効率を実証した。
論文 参考訳(メタデータ) (2024-01-14T05:38:10Z) - Subsurface Characterization using Ensemble-based Approaches with Deep
Generative Models [2.184775414778289]
逆モデリングは、計算コストとスパースデータセットによる予測精度の低下により、不適切な高次元アプリケーションに限られる。
Wasserstein Geneversarative Adrial Network と Gradient Penalty (WGAN-GP) と Ensemble Smoother を多重データ同化 (ES-MDA) と組み合わせる。
WGAN-GPは低次元の潜伏空間から高次元K場を生成するために訓練され、ES-MDAは利用可能な測定値を同化することにより潜伏変数を更新する。
論文 参考訳(メタデータ) (2023-10-02T01:27:10Z) - Fast Diffusion EM: a diffusion model for blind inverse problems with
application to deconvolution [0.0]
現在の手法では、劣化が知られており、復元と多様性の点で印象的な結果をもたらすと仮定している。
本研究では、これらのモデルの効率を活用し、復元された画像と未知のパラメータを共同で推定する。
本手法は,拡散モデルから抽出したサンプルを用いて,問題の対数類似度を近似し,未知のモデルパラメータを推定する方法とを交互に比較する。
論文 参考訳(メタデータ) (2023-09-01T06:47:13Z) - A Geometric Perspective on Diffusion Models [57.27857591493788]
本稿では,人気のある分散拡散型SDEのODEに基づくサンプリングについて検討する。
我々は、最適なODEベースのサンプリングと古典的な平均シフト(モード探索)アルゴリズムの理論的関係を確立する。
論文 参考訳(メタデータ) (2023-05-31T15:33:16Z) - Reflected Diffusion Models [93.26107023470979]
本稿では,データのサポートに基づいて進化する反射微分方程式を逆転する反射拡散モデルを提案する。
提案手法は,一般化されたスコアマッチング損失を用いてスコア関数を学習し,標準拡散モデルの主要成分を拡張する。
論文 参考訳(メタデータ) (2023-04-10T17:54:38Z) - VTAE: Variational Transformer Autoencoder with Manifolds Learning [144.0546653941249]
深層生成モデルは、多くの潜伏変数を通して非線形データ分布の学習に成功している。
ジェネレータの非線形性は、潜在空間がデータ空間の不満足な射影を示し、表現学習が不十分になることを意味する。
本研究では、測地学と正確な計算により、深部生成モデルの性能を大幅に向上させることができることを示す。
論文 参考訳(メタデータ) (2023-04-03T13:13:19Z) - A Model for Multi-View Residual Covariances based on Perspective
Deformation [88.21738020902411]
マルチビューSfM, オードメトリ, SLAMセットアップにおける視覚的残差の共分散モデルの導出を行う。
我々は、合成データと実データを用いてモデルを検証し、それを光度および特徴量に基づくバンドル調整に統合する。
論文 参考訳(メタデータ) (2022-02-01T21:21:56Z) - Estimating Divergences in High Dimensions [6.172809837529207]
本研究では,高次元データにおける分散度推定のための分解可能なモデルを提案する。
これにより、高次元分布の推定密度を低次元関数の積に分解することができる。
最大極大推定器から分解可能なモデルを用いてクルバック・リーブラーの発散を推定すると,既存の発散推定法よりも優れることを示す。
論文 参考訳(メタデータ) (2021-12-08T20:37:28Z) - Gaussian Function On Response Surface Estimation [12.35564140065216]
メタモデリング手法によるブラックボックス機械学習モデルの解釈(機能とサンプル)のための新しいフレームワークを提案する。
メタモデルは、興味のある領域のデータサンプルでコンピュータ実験を実行することによって、訓練された複雑なモデルによって生成されたデータから推定することができる。
論文 参考訳(メタデータ) (2021-01-04T04:47:00Z) - Fast approximations in the homogeneous Ising model for use in scene
analysis [61.0951285821105]
我々は、推論に必要な量を数値計算できる正確な近似を提供する。
近似式はスケーラブルでマルコフランダム場の大きさに満足できないことを示す。
機能的磁気共鳴イメージングアクティベーション検出実験においてベイズ推論を行い, ピスタチオ樹収量の年次増加の空間パターンにおける異方性に対する確率比試験を行った。
論文 参考訳(メタデータ) (2017-12-06T14:24:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。