Higher-Order Quantum Reservoir Computing
- URL: http://arxiv.org/abs/2006.08999v2
- Date: Tue, 20 Oct 2020 14:41:59 GMT
- Title: Higher-Order Quantum Reservoir Computing
- Authors: Quoc Hoan Tran and Kohei Nakajima
- Abstract summary: We propose a hybrid quantum-classical framework consisting of multiple but small quantum systems that are mutually communicated via classical connections like linear feedback.
We demonstrate the effectiveness of our framework in emulating large-scale nonlinear dynamical systems.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum reservoir computing (QRC) is an emerging paradigm for harnessing the
natural dynamics of quantum systems as computational resources that can be used
for temporal machine learning tasks. In the current setup, QRC is difficult to
deal with high-dimensional data and has a major drawback of scalability in
physical implementations. We propose higher-order QRC, a hybrid
quantum-classical framework consisting of multiple but small quantum systems
that are mutually communicated via classical connections like linear feedback.
By utilizing the advantages of both classical and quantum techniques, our
framework enables an efficient implementation to boost the scalability and
performance of QRC. Furthermore, higher-order settings allow us to implement a
FORCE learning or an innate training scheme, which provides flexibility and
high operability to harness high-dimensional quantum dynamics and significantly
extends the application domain of QRC. We demonstrate the effectiveness of our
framework in emulating large-scale nonlinear dynamical systems, including
complex spatiotemporal chaos, which outperforms many of the existing machine
learning techniques in certain situations.
Related papers
- Quantum reservoir computing in atomic lattices [0.8437187555622164]
Quantum reservoir computing exploits the dynamical properties of quantum systems to perform machine learning tasks.
We show that optimal performance in QRC can be achieved without relying on disordered systems.
arXiv Detail & Related papers (2024-11-20T15:39:15Z) - Leveraging Pre-Trained Neural Networks to Enhance Machine Learning with Variational Quantum Circuits [48.33631905972908]
We introduce an innovative approach that utilizes pre-trained neural networks to enhance Variational Quantum Circuits (VQC)
This technique effectively separates approximation error from qubit count and removes the need for restrictive conditions.
Our results extend to applications such as human genome analysis, demonstrating the broad applicability of our approach.
arXiv Detail & Related papers (2024-11-13T12:03:39Z) - LatentQGAN: A Hybrid QGAN with Classical Convolutional Autoencoder [7.945302052915863]
A potential application of quantum machine learning is to harness the power of quantum computers for generating classical data.
We propose LatentQGAN, a novel quantum model that uses a hybrid quantum-classical GAN coupled with an autoencoder.
arXiv Detail & Related papers (2024-09-22T23:18:06Z) - Quantum reservoir computing on random regular graphs [0.0]
Quantum reservoir computing (QRC) is a low-complexity learning paradigm that combines input-driven many-body quantum systems with classical learning techniques.
We study information localization, dynamical quantum correlations, and the many-body structure of the disordered Hamiltonian.
Our findings thus provide guidelines for the optimal design of disordered analog quantum learning platforms.
arXiv Detail & Related papers (2024-09-05T16:18:03Z) - Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - A Quantum-Classical Collaborative Training Architecture Based on Quantum
State Fidelity [50.387179833629254]
We introduce a collaborative classical-quantum architecture called co-TenQu.
Co-TenQu enhances a classical deep neural network by up to 41.72% in a fair setting.
It outperforms other quantum-based methods by up to 1.9 times and achieves similar accuracy while utilizing 70.59% fewer qubits.
arXiv Detail & Related papers (2024-02-23T14:09:41Z) - Expressive Quantum Supervised Machine Learning using Kerr-nonlinear
Parametric Oscillators [0.0]
Quantum machine learning with variational quantum algorithms (VQA) has been actively investigated as a practical algorithm in the noisy intermediate-scale quantum (NISQ) era.
Recent researches reveal that the data reuploading, which repeatedly encode classical data into quantum circuit, is necessary for obtaining the expressive quantum machine learning model.
We propose quantum machine learning with Kerrnon Parametric Hilberts (KPOs) as another promising quantum computing device.
arXiv Detail & Related papers (2023-05-01T07:01:45Z) - TeD-Q: a tensor network enhanced distributed hybrid quantum machine
learning framework [59.07246314484875]
TeD-Q is an open-source software framework for quantum machine learning.
It seamlessly integrates classical machine learning libraries with quantum simulators.
It provides a graphical mode in which the quantum circuit and the training progress can be visualized in real-time.
arXiv Detail & Related papers (2023-01-13T09:35:05Z) - Scalable photonic platform for real-time quantum reservoir computing [0.0]
Quantum Reservoir Computing exploits the information processing capabilities of quantum systems to solve non-trivial temporal tasks.
Recent progress has shown the potential of QRC exploiting the enlarged Hilbert space.
We propose a photonic platform suitable for real-time QRC based on a physical ensemble of reservoirs in the form of identical optical pulses recirculating through a closed loop.
arXiv Detail & Related papers (2022-07-28T11:44:44Z) - Optimizing Tensor Network Contraction Using Reinforcement Learning [86.05566365115729]
We propose a Reinforcement Learning (RL) approach combined with Graph Neural Networks (GNN) to address the contraction ordering problem.
The problem is extremely challenging due to the huge search space, the heavy-tailed reward distribution, and the challenging credit assignment.
We show how a carefully implemented RL-agent that uses a GNN as the basic policy construct can address these challenges.
arXiv Detail & Related papers (2022-04-18T21:45:13Z) - Error mitigation and quantum-assisted simulation in the error corrected
regime [77.34726150561087]
A standard approach to quantum computing is based on the idea of promoting a classically simulable and fault-tolerant set of operations.
We show how the addition of noisy magic resources allows one to boost classical quasiprobability simulations of a quantum circuit.
arXiv Detail & Related papers (2021-03-12T20:58:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.